A342112 Drop the final digit of n^5.
0, 0, 3, 24, 102, 312, 777, 1680, 3276, 5904, 10000, 16105, 24883, 37129, 53782, 75937, 104857, 141985, 188956, 247609, 320000, 408410, 515363, 643634, 796262, 976562, 1188137, 1434890, 1721036, 2051114, 2430000, 2862915, 3355443, 3913539, 4543542, 5252187, 6046617
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10, 10,-5,1,0,0,0,0,1,-5,10,-10,5,-1).
- Index entries for sequences related to final digits of numbers.
Programs
-
Mathematica
Table[(n^5-Last[IntegerDigits[n]])/10,{n,0,36}]
Formula
G.f.: x^2*(3 + 9*x + 12*x^2 + 12*x^3 + 12*x^4 + 12*x^5 + 12*x^6 + 12*x^7 + 13*x^8 + 8*x^9 + 15*x^10 - x^11 + x^12)/((1 - x)^6*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9)).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + a(n-10) - 5*a(n-11) + 10*a(n-12) - 10*a(n-13) + 5*a(n-14) - a(n-15) for n > 14.
a(n) = floor(n^5/10).
Comments