A342113 Number of surjective compatible pairs (C,O), where O is an acyclic orientation of simple labeled graph G on n nodes and C:V(G) -> {1,2,...}.
1, 1, 7, 145, 7999, 1103041, 365051647, 281898887425, 497570152386559, 1976049386530790401, 17439288184770966867967, 338596445913833207323643905, 14343481992486219718322674565119
Offset: 0
Keywords
Links
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. 5 (1973), 171-178.
Crossrefs
Cf. A339934.
Programs
-
Mathematica
nn = 12; b[n_] := q^Binomial[n, 2] n! /. q -> 2; e[z_] := Sum[z^n/b[n], {n, 0, nn}];Table[b[n], {n, 0, nn}] CoefficientList[ Series[1/(1 - (1/e[-z] - 1)), {z, 0, nn}], z]
Formula
Let E(x) = Sum_{n>=0}x^n/(n! 2^Binomial(n,2)). Then Sum_{n>=0}a_n x^n/(n! 2^Binomial(n,2)) = 1/(2 - E(-x)^-1).
Comments