A342132 Number of unlabeled vertically indecomposable modular lattices on n nodes.
1, 1, 0, 1, 1, 2, 3, 7, 12, 28, 54, 127, 266, 614, 1356, 3134, 7091, 16482, 37929, 88622, 206295, 484445, 1136897, 2682451, 6333249, 15005945, 35595805, 84649515, 201560350, 480845007, 1148537092, 2747477575, 6579923491, 15777658535, 37871501929
Offset: 1
Keywords
Examples
a(7)=3: These are the three lattices. o o __o__ / \ /|\ / /|\ \ o o o o o o o o o o /|\ / / \|/ \_\|/_/ o o o o o o \|/ \ / o o
Links
- P. Jipsen and N. Lawless, Generating all finite modular lattices of a given size, Algebra universalis, 74 (2015), 253-264.
- J. Kohonen, Generating modular lattices of up to 30 elements, Order, 36 (2019), 423-435.
- J. Kohonen, Cartesian lattice counting by the vertical 2-sum, arXiv:2007.03232 [math.CO] preprint (2020).
Crossrefs
Cf. A006981 (modular lattices, including vertically decomposable).
Comments