A342154 Number of partitions of n^5 into two positive squares.
0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 3, 0, 0, 3, 0, 0, 0, 3, 1, 0, 3, 0, 0, 0, 0, 5, 3, 0, 0, 3, 0, 0, 1, 0, 3, 0, 0, 3, 0, 0, 3, 3, 0, 0, 0, 3, 0, 0, 0, 0, 6, 0, 3, 3, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 18, 0, 0, 3, 0, 0, 0, 1, 3, 3, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 18, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 3, 1, 0, 5, 3, 0, 0, 3, 0
Offset: 0
Examples
2^5 = 32 = 4^2 + 4^2. So a(2) = 1. 5^5 = 3125 = 10^2 + 55^2 = 25^2 + 50^2 = 38^2 + 41^2. So a(5) = 3.
Links
Programs
-
Maple
f:= proc(n) local x,y,S; S:= map(t -> subs(t,[x,y]),[isolve(x^2+y^2=n^5)]); nops(select(t -> t[1] >= t[2] and t[2] > 0, S)) end proc: map(f, [$0..200]); # Robert Israel, Mar 03 2021
-
PARI
a(n) = my(cnt=0, m=n^5); for(k=1, sqrt(m/2), l=m-k*k; if(l>0&&issquare(l), cnt++)); cnt;
Comments