A342156 For n > 2, a(n) = 0,1,2, or 3 when (prime(n+1) mod 6, prime(n) mod 6) = (1,1),(1,5),(5,1), or (5,5), respectively.
1, 2, 1, 2, 1, 2, 3, 1, 0, 2, 1, 2, 3, 3, 1, 0, 2, 1, 0, 2, 3, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 2, 1, 0, 0, 2, 3, 3, 1, 2, 1, 2, 1, 0, 0, 2, 1, 2, 3, 1, 2, 3, 3, 3, 1, 0, 2, 1, 2, 1, 2, 1, 2, 1, 0, 2, 1, 2, 3, 1, 0, 0, 2, 3, 1, 2, 1, 2, 1, 2, 1, 0, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 3, 1, 0, 0, 2, 3, 3, 1, 0, 2, 3, 3
Offset: 3
Keywords
Examples
a(1)=1 because (note that offset is 3 and primes 2,3 are excluded) prime(3+1) = 7 == 1 (mod 6) and prime(3) = 5 == 5 (mod 6), which is the case in which a(n)=1.
Programs
-
Mathematica
pp = {}; Do[If[Mod[Prime[n + 1], 6] == 1 && Mod[Prime[n], 6] == 1, AppendTo[pp, 0], If[Mod[Prime[n + 1], 6] == 5 && Mod[Prime[n], 6] == 1, AppendTo[pp, 2], If[Mod[Prime[n + 1], 6] == 1 && Mod[Prime[n], 6] == 5, AppendTo[pp, 1], If[Mod[Prime[n + 1], 6] == 5 && Mod[Prime[n], 6] == 5, AppendTo[pp, 3]]]]], {n, 3, 108}]; pp
Formula
A341765(n+1) = a(n) mod 3 and later we change 2 -> -1.
Comments