A342192 Heinz numbers of partitions of crank 0.
6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 100, 106, 118, 122, 134, 140, 142, 146, 158, 166, 178, 194, 196, 202, 206, 214, 218, 220, 226, 254, 260, 262, 274, 278, 298, 300, 302, 308, 314, 326, 334, 340, 346, 358, 362, 364, 380, 382, 386, 394, 398
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 6: {1,2} 106: {1,16} 218: {1,29} 10: {1,3} 118: {1,17} 220: {1,1,3,5} 14: {1,4} 122: {1,18} 226: {1,30} 22: {1,5} 134: {1,19} 254: {1,31} 26: {1,6} 140: {1,1,3,4} 260: {1,1,3,6} 34: {1,7} 142: {1,20} 262: {1,32} 38: {1,8} 146: {1,21} 274: {1,33} 46: {1,9} 158: {1,22} 278: {1,34} 58: {1,10} 166: {1,23} 298: {1,35} 62: {1,11} 178: {1,24} 300: {1,1,2,3,3} 74: {1,12} 194: {1,25} 302: {1,36} 82: {1,13} 196: {1,1,4,4} 308: {1,1,4,5} 86: {1,14} 202: {1,26} 314: {1,37} 94: {1,15} 206: {1,27} 326: {1,38} 100: {1,1,3,3} 214: {1,28} 334: {1,39}
Crossrefs
Indices of zeros in A257989.
A000005 counts constant partitions.
A001522 counts partitions of positive crank.
A003242 counts anti-run compositions.
A064391 counts partitions by crank.
A064428 counts partitions of nonnegative crank.
A224958 counts compositions with alternating parts unequal.
A257989 gives the crank of the partition with Heinz number n.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]]; Select[Range[100],ck[primeMS[#]]==0&]
Comments