cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342194 Number of strict compositions of n with equal differences, or strict arithmetic progressions summing to n.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 7, 7, 7, 13, 11, 11, 17, 13, 15, 25, 17, 17, 29, 19, 23, 35, 25, 23, 39, 29, 29, 45, 33, 29, 55, 31, 35, 55, 39, 43, 65, 37, 43, 65, 51, 41, 77, 43, 51, 85, 53, 47, 85, 53, 65, 87, 61, 53, 99, 67, 67, 97, 67, 59, 119, 61, 71, 113, 75, 79, 123, 67, 79, 117
Offset: 0

Views

Author

Gus Wiseman, Apr 02 2021

Keywords

Examples

			The a(1) = 1 through a(9) = 13 compositions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)    (8)    (9)
            (1,2)  (1,3)  (1,4)  (1,5)    (1,6)  (1,7)  (1,8)
            (2,1)  (3,1)  (2,3)  (2,4)    (2,5)  (2,6)  (2,7)
                          (3,2)  (4,2)    (3,4)  (3,5)  (3,6)
                          (4,1)  (5,1)    (4,3)  (5,3)  (4,5)
                                 (1,2,3)  (5,2)  (6,2)  (5,4)
                                 (3,2,1)  (6,1)  (7,1)  (6,3)
                                                        (7,2)
                                                        (8,1)
                                                        (1,3,5)
                                                        (2,3,4)
                                                        (4,3,2)
                                                        (5,3,1)
		

Crossrefs

Strict compositions in general are counted by A032020.
The unordered version is A049980.
The non-strict version is A175342.
A000203 adds up divisors.
A000726 counts partitions with alternating parts unequal.
A003242 counts anti-run compositions.
A224958 counts compositions with alternating parts unequal.
A342343 counts compositions with alternating parts strictly decreasing.
A342495 counts compositions with constant quotients.
A342527 counts compositions with alternating parts equal.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],SameQ@@Differences[#]&]],{n,0,30}]

Formula

a(n > 0) = A175342(n) - A000005(n) + 1.
a(n > 0) = 2*A049988(n) - 2*A000005(n) + 1 = 2*A049982(n) + 1.