cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342231 Total sum of parts which are powers of 2 in all partitions of n.

Original entry on oeis.org

0, 1, 4, 6, 17, 24, 43, 64, 115, 159, 247, 347, 513, 704, 1001, 1350, 1894, 2513, 3408, 4489, 5989, 7786, 10226, 13172, 17079, 21800, 27938, 35362, 44900, 56402, 70959, 88545, 110617, 137108, 170051, 209599, 258328, 316685, 388072, 473331, 577026, 700524, 849775, 1027167
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2021

Keywords

Examples

			For n = 4 we have:
------------------------------------
Partitions          Sum of parts
.              which are powers of 2
------------------------------------
4 ..................... 4
3 + 1 ................. 1
2 + 2 ................. 4
2 + 1 + 1 ............. 4
1 + 1 + 1 + 1 ......... 4
------------------------------------
Total ................ 17
So a(4) = 17.
		

Crossrefs

Programs

  • Mathematica
    nmax = 43; CoefficientList[Series[Sum[2^k x^(2^k)/(1 - x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}]/Product[(1 - x^j), {j, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[(2^IntegerExponent[2 k, 2] - 1) PartitionsP[n - k], {k, 1, n}], {n, 0, 43}]

Formula

G.f.: Sum_{k>=0} 2^k*x^(2^k)/(1 - x^(2^k)) / Product_{j>=1} (1 - x^j).
a(n) = Sum_{k=1..n} A038712(k) * A000041(n-k).