cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342237 Table read by upward antidiagonals: T(n,k) is the number of strings of length k over an n-letter alphabet that begin with a palindrome of two or more letters; n, k >= 1.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 3, 6, 1, 0, 4, 15, 14, 1, 0, 5, 28, 51, 30, 1, 0, 6, 45, 124, 165, 62, 1, 0, 7, 66, 245, 532, 507, 126, 1, 0, 8, 91, 426, 1305, 2164, 1551, 254, 1, 0, 9, 120, 679, 2706, 6605, 8788, 4683, 510, 1, 0, 10, 153, 1016, 5005, 16386, 33405, 35284, 14127, 1022, 1
Offset: 1

Views

Author

Peter Kagey, Mar 06 2021

Keywords

Examples

			Table begins:
n\k | 1  2   3    4      5       6        7         8
----+------------------------------------------------
  1 | 0  1   1    1      1       1        1         1
  2 | 0  2   6   14     30      62      126       254
  3 | 0  3  15   51    165     507     1551      4683
  4 | 0  4  28  124    532    2164     8788     35284
  5 | 0  5  45  245   1305    6605    33405    167405
  6 | 0  6  66  426   2706   16386    99186    595986
  7 | 0  7  91  679   5005   35287   248731   1742839
  8 | 0  8 120 1016   8520   68552   551496   4415048
		

Crossrefs

Rows: A000918 (n=2), A248122 (n=3), A249629 (n=4), A249638 (n=5), A249639 (n=6), A249640 (n=7), A249641 (n=8), A249642 (n=9), A249643 (n=10).
Columns: A000384 (k=3), A007588 (k=4).

Formula

T(n,1) = 0.
T(n,2k) = n*T(n,2k-1) + n^k - T(n,k).
T(n,2k+1) = n*T(n,2k) + n^(k+1) - T(n,k+1).