A342264 Lexicographically earliest sequence of distinct nonnegative terms such that both a(n) and a(n) + a(n+1) have digits in nondecreasing order.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 11, 12, 14, 15, 18, 16, 17, 19, 25, 22, 23, 24, 33, 26, 29, 27, 28, 38, 39, 49, 66, 45, 34, 35, 44, 55, 56, 57, 58, 59, 67, 46, 68, 47, 69, 48, 77, 36, 78, 37, 79, 88, 89, 99, 123, 111, 112, 113, 114, 115, 118, 116, 117, 119, 125, 122, 124, 133, 126, 129, 127, 128, 138
Offset: 1
Examples
a(10) = 9 and a(11) = 13 sum up to 22: the three numbers have digits in nondecreasing order; a(11) = 13 and a(12) = 11 sum up to 24 (same property); a(12) = 11 and a(13) = 12 sum up to 23 (same property); etc.
Links
- Robert Israel, Table of n, a(n) for n = 1..4000
Crossrefs
Programs
-
Maple
ND[1]:= [$1..9]: for d from 2 to 5 do ND[d]:= map(proc(t) local j; seq(10*t + j,j=(t mod 10) .. 9) end proc, ND[d-1]) od: S:= [seq(op(ND[i]),i=1..5)]): nS:= nops(S): isnd:= proc(x) member(x,ND[ilog10(x)+1]) end proc: R:= 0: t:= 0: for count from 2 to 100 do found:= false; for i from 1 to nS do if isnd(t + S[i]) then R:= R, S[i]; t:= S[i]; S:= subsop(i=NULL, S); nS:= nS-1; found:= true; break fi; od; if not found then break fi; od: R; # Robert Israel, Jul 14 2025
-
Python
def nondec(n): s = str(n); return s == "".join(sorted(s)) def aupton(terms): alst = [0] for n in range(2, terms+1): an = 1 while True: while an in alst: an += 1 if nondec(an) and nondec(alst[-1]+an): alst.append(an); break else: an += 1 return alst print(aupton(74)) # Michael S. Branicky, Mar 07 2021
Comments