cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342300 Least nonnegative number greater than the previous number which is simultaneously an n-gonal and (n+1)-gonal number.

Original entry on oeis.org

0, 1, 3, 36, 9801, 40755, 121771, 297045, 631125, 1212751, 2158695, 3617601, 5773825, 8851275, 13117251, 18886285, 26523981, 36450855, 49146175, 65151801, 85076025, 109597411, 139468635, 175520325, 218664901, 269900415, 330314391, 401087665, 483498225, 578925051, 688851955, 814871421
Offset: 0

Views

Author

Robert G. Wilson v, Jun 04 2021

Keywords

Comments

Also the least nontrivial number simultaneously an n and (n+1)-gonal number for n greater than one.
0 and 1 are always terms of any sequence of polygonal numbers of a particular rank beginning with index 0.
Since the formula for the k-th n-gonal number P(n,k) is k*(4+k*(n-2)-n)/2, one can extrapolate for the non-geometrical terms 0, 1 and 2.
Indices of the n and (n+1)-gonal numbers by pairs: {0, 0} {1, 1}, {3, 2}, {8, 6}, {99, 81}, {165, 143}, {247, 221}, {345, 315}, {459, 425}, {589, 551}, {735, 693}, {897, 851} ..., .
{x, y} of the above are {8n^2 + 10n - 3, 8n^2 - 10n - 7} for n>3 (A303295).
In the first 1000 terms, 1 is congruent to 0 (mod 6), 333 are congruent to 1 (mod 6), and 666 are congruent to 3 (mod 6).

Examples

			a(3) is the least triangular and square number > 3, which is 36: A001110(2).
a(4) is the least square and pentagonal number > 36, which is 9801: A036353(2).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Intersection[ Table[ PolygonalNumber[n, i], {i, 2, 10000}], Table[ PolygonalNumber[n + 1, i], {i, 2, 10000}]][[1]]; a[0] = 0; a[1] = 1; Array[a, 30, 0] (* Or *)
    a[n_] := a[n] = 6a[n - 1] -15a[n - 2] +20a[n - 3] -15a[n - 4] +6a[n - 5] -a[n - 6]; a[0] = 0; a[1] = 1; a[2] = 3; a[3] = 36; a[4] = 9801; a[5] = 40755; a[6] = 121771; a[7] = 297045; a[8] = 631125; a[9] = 1212751; Array[a, 30, 0]

Formula

a(n) = 32n^5 - 112n^4 + 70n^3 + 93n^2 - 57n - 35 for n > 3; a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 36.
G.f.: x*(1 - 3*x + 33*x^2 + 9610*x^3 - 17556*x^4 + 23575*x^5 - 17753*x^6 + 7122*x^7 - 1189*x^8)/(1 - x)^6. - Stefano Spezia, Jun 08 2021