A342323 Square array read by ascending antidiagonals: T(n,k) = gcd(k, Phi_k(n)), where Phi_k is the k-th cyclotomic polynomial, n >= 0, k >= 1.
1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 7, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 5, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1
Offset: 0
Examples
Table begins: n\k | 1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------ 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 2 3 2 5 1 7 2 3 1 11 1 2 | 1 1 1 1 1 3 1 1 1 1 1 1 3 | 1 2 1 2 1 1 1 2 1 1 1 1 4 | 1 1 3 1 1 1 1 1 3 5 1 1 5 | 1 2 1 2 1 3 1 2 1 1 1 1 6 | 1 1 1 1 5 1 1 1 1 1 1 1 7 | 1 2 3 2 1 1 1 2 3 1 1 1 8 | 1 1 1 1 1 3 7 1 1 1 1 1 9 | 1 2 1 2 1 1 1 2 1 5 1 1 10 | 1 1 3 1 1 1 1 1 3 1 1 1 11 | 1 2 1 2 5 3 1 2 1 1 1 1 12 | 1 1 1 1 1 1 1 1 1 1 11 1
Links
- Jianing Song, Table of n, a(n) for n = 0..5049 (the first 100 antidiagonals)
Crossrefs
Cf. A342255.
Programs
-
Mathematica
A342323[n_, k_] := GCD[k, Cyclotomic[k, n]]; Table[A342323[n-k+1, k], {n, 0, 15}, {k, n+1}] (* Paolo Xausa, Feb 09 2024 *)
-
PARI
T(n,k) = gcd(k, polcyclo(k,n))
Formula
For k > 1, let p be the largest prime factor of k, then T(n,k) = p if p does not divide n and k = p^e*ord(p,n) for some e > 0, where ord(p,n) is the multiplicative order of n modulo p.
Comments