A342333 Number of compositions of n with all adjacent parts (x, y) satisfying x >= 2y or y >= 2x.
1, 1, 1, 3, 4, 5, 10, 18, 26, 42, 72, 114, 184, 305, 494, 799, 1305, 2123, 3446, 5611, 9134, 14851, 24162, 39314, 63945, 104025, 169238, 275305, 447863, 728592, 1185248, 1928143, 3136706, 5102743, 8301086, 13504175, 21968436, 35737995, 58138282, 94578751, 153859673
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 18 compositions: (1) (2) (3) (4) (5) (6) (7) (12) (13) (14) (15) (16) (21) (31) (41) (24) (25) (121) (131) (42) (52) (212) (51) (61) (141) (124) (213) (142) (312) (151) (1212) (214) (2121) (241) (313) (412) (421) (1213) (1312) (2131) (3121) (12121)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
Crossrefs
The unordered version (partitions) is A000929.
The version not allowing equality (i.e., strict relations) is A342332.
The version allowing partial equality is A342334.
A002843 counts compositions with adjacent parts x <= 2y.
A154402 counts partitions with adjacent parts x = 2y.
A274199 counts compositions with adjacent parts x < 2y.
A342098 counts partitions with adjacent parts x > 2y.
A342331 counts compositions with adjacent parts x = 2y or y = 2x.
A342335 counts compositions with adjacent parts x >= 2y or y = 2x.
A342337 counts partitions with adjacent parts x = y or x = 2y.
A342338 counts compositions with adjacent parts x < 2y and y <= 2x.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j, j), j= `if`(i=0, 1..n, {$1..min(n, iquo(i, 2)), $(2*i)..n}))) end: a:= n-> b(n, 0): seq(a(n), n=0..42); # Alois P. Heinz, May 24 2021
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]>=2*#[[i-1]]||#[[i-1]]>=2*#[[i]],{i,2,Length[#]}]&]],{n,0,15}] (* Second program: *) b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, Sum[b[n-j, j], {j, 1, n}], Sum[b[n-j, j], {j, Range[Min[n, Quotient[i, 2]]]~Union~Range[2i, n]}]]]; a[n_] := b[n, 0]; a /@ Range[0, 42] (* Jean-François Alcover, Jun 10 2021, after_Alois P. Heinz_ *)
Extensions
More terms from Joerg Arndt, Mar 12 2021
Comments