A342341 Number of strict compositions of n with all adjacent parts (x, y) satisfying x < 2y and y < 2x.
1, 1, 1, 1, 1, 3, 1, 3, 3, 5, 5, 5, 9, 7, 13, 15, 17, 19, 29, 31, 39, 43, 63, 59, 75, 121, 119, 169, 167, 199, 279, 305, 343, 479, 537, 733, 789, 883, 1057, 1421, 1545, 1831, 2409, 2577, 3343, 4001, 4657, 5131, 6065, 7755, 8841, 10473, 12995, 14659, 17671, 20619, 25157, 28255, 33131, 38265, 47699, 53171, 62611, 80005, 88519, 105937, 119989
Offset: 0
Keywords
Examples
The a(1) = 1 through a(17) = 17 compositions (A..G = 10..16): 1 2 3 4 5 6 7 8 9 A B C D E F G 23 34 35 45 46 47 57 58 59 69 6A 32 43 53 54 64 56 75 67 68 78 79 234 235 65 345 76 86 87 97 432 532 74 354 85 95 96 A6 435 346 347 357 358 453 643 356 456 457 534 653 465 475 543 743 546 547 2345 564 574 2354 645 745 4532 654 754 5432 753 853 2346 2347 6432 2356 6532 7432
Links
- Bert Dobbelaere, Table of n, a(n) for n = 0..100
Crossrefs
The non-strict version is A342330.
A000929 counts partitions with adjacent parts x >= 2y.
A002843 counts compositions with adjacent parts x <= 2y.
A154402 counts partitions with adjacent parts x = 2y.
A274199 counts compositions with adjacent parts x < 2y.
A342098 counts partitions with adjacent parts x > 2y.
A342331 counts compositions with adjacent parts x = 2y or y = 2x.
A342332 counts compositions with adjacent parts x > 2y or y > 2x.
A342333 counts compositions with adjacent parts x >= 2y or y >= 2x.
A342335 counts compositions with adjacent parts x >= 2y or y = 2x.
A342337 counts partitions with adjacent parts x = y or x = 2y.
A342338 counts compositions with adjacent parts x < 2y and y <= 2x.
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],And@@Table[#[[i]]<2*#[[i-1]]&[[i-1]]<2*#[[i]],{i,2,Length[#]}]&]],{n,0,15}]
Extensions
More terms from Bert Dobbelaere, Mar 19 2021
Comments