A342342 Number of strict compositions of n with all adjacent parts (x, y) satisfying x <= 2y and y <= 2x.
1, 1, 1, 3, 1, 3, 5, 5, 3, 11, 9, 11, 17, 15, 29, 39, 31, 39, 65, 57, 107, 127, 149, 155, 187, 265, 293, 419, 523, 571, 781, 763, 941, 1371, 1387, 2125, 2383, 2775, 3243, 4189, 4555, 5349, 7241, 7997, 10591, 13171, 14581, 17213, 20253, 25177, 27701, 34317
Offset: 0
Keywords
Examples
The a(1) = 1 through a(12) = 17 strict compositions (A = 10, B = 11, C = 12): 1 2 3 4 5 6 7 8 9 A B C 12 23 24 34 35 36 46 47 48 21 32 42 43 53 45 64 56 57 123 124 54 235 65 75 321 421 63 532 74 84 234 1234 236 246 243 1243 245 345 324 3421 542 354 342 4321 632 435 423 1235 453 432 5321 534 543 642 1236 1245 5421 6321
Crossrefs
The non-strict version is A224957.
A000929 counts partitions with adjacent parts x >= 2y.
A002843 counts compositions with adjacent parts x <= 2y.
A154402 counts partitions with adjacent parts x = 2y.
A274199 counts compositions with adjacent parts x < 2y.
A342098 counts partitions with adjacent parts x > 2y.
A342331 counts compositions with adjacent parts x = 2y or y = 2x.
A342332 counts compositions with adjacent parts x > 2y or y > 2x.
A342333 counts compositions with adjacent parts x >= 2y or y >= 2x.
A342335 counts compositions with adjacent parts x >= 2y or y = 2x.
A342337 counts partitions with adjacent parts x = y or x = 2y.
A342338 counts compositions with adjacent parts x < 2y and y <= 2x.
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],And@@Table[#[[i]]<=2*#[[i-1]]&[[i-1]]<=2*#[[i]],{i,2,Length[#]}]&]],{n,0,15}]
Extensions
a(40)-a(51) from Alois P. Heinz, May 24 2021
Comments