A342366 a(1) = 1, a(2) = 2; for n > 2, a(n) is the least positive integer not occurring earlier that shares a factor but not a digit with a(n-1).
1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 20, 14, 7, 21, 30, 15, 24, 16, 22, 11, 33, 18, 26, 13, 52, 34, 17, 68, 32, 40, 25, 60, 27, 36, 28, 35, 42, 38, 19, 57, 39, 45, 63, 48, 50, 44, 55, 66, 51, 69, 23, 46, 58, 29, 87, 54, 62, 31, 248, 56, 49, 70, 64, 72, 80, 65, 78, 90, 74, 82, 41, 205, 164, 88, 76, 84
Offset: 1
Links
- Scott R. Shannon, Image of the first 10000 terms. The green line is a(n) = n.
Crossrefs
Programs
-
Mathematica
Block[{a = {1, 2}, m = {2}, k}, Do[k = 2; While[Nand[FreeQ[a, k], GCD[k, a[[-1]]] > 1, ! IntersectingQ[m, IntegerDigits[k]]], k++]; AppendTo[a, k]; Set[m, IntegerDigits[k]], {i, 74}]; a] (* Michael De Vlieger, Mar 11 2021 *)
-
Python
from sympy import factorint def aupton(terms): alst, aset = [1, 2], {1, 2} for n in range(3, terms+1): an = 1 anm1_digs, anm1_factors = set(str(alst[-1])), set(factorint(alst[-1])) while True: while an in aset: an += 1 if set(str(an)) & anm1_digs == set(): if set(factorint(an)) & anm1_factors != set(): alst.append(an); aset.add(an); break an += 1 return alst print(aupton(76)) # Michael S. Branicky, Mar 09 2021
Comments