A342356 a(1) = 1, a(2) = 10; for n > 2, a(n) is the least positive integer not occurring earlier that shares both a factor and a digit with a(n-1).
1, 10, 12, 2, 20, 22, 24, 4, 14, 16, 6, 26, 28, 8, 18, 15, 5, 25, 35, 30, 3, 33, 36, 32, 34, 38, 48, 40, 42, 21, 27, 57, 45, 50, 52, 54, 44, 46, 56, 58, 68, 60, 62, 64, 66, 63, 39, 9, 69, 90, 70, 7, 77, 147, 49, 84, 74, 37, 333, 93, 31, 124, 72, 75, 51, 17, 102, 80, 78, 76, 86, 82, 88, 98, 91
Offset: 1
Links
- Scott R. Shannon, Image of the first 100000 terms. The green line is a(n) = n.
Crossrefs
Programs
-
Mathematica
Block[{a = {1, 10}, m = {1, 0}, k}, Do[k = 2; While[Nand[FreeQ[a, k], GCD[k, a[[-1]]] > 1, IntersectingQ[m, IntegerDigits[k]]], k++]; AppendTo[a, k]; Set[m, IntegerDigits[k]], {i, 73}]; a] (* Michael De Vlieger, Mar 11 2021 *)
-
Python
from sympy import factorint def aupton(terms): alst, aset = [1, 10], {1, 10} for n in range(3, terms+1): an = 1 anm1_digs, anm1_factors = set(str(alst[-1])), set(factorint(alst[-1])) while True: while an in aset: an += 1 if set(str(an)) & anm1_digs != set(): if set(factorint(an)) & anm1_factors != set(): alst.append(an); aset.add(an); break an += 1 return alst print(aupton(75)) # Michael S. Branicky, Mar 09 2021
Comments