A342360 Decimal expansion of 1/(Omega+1)^2, where Omega=LambertW(1) is the Omega constant.
4, 0, 7, 1, 7, 6, 3, 8, 7, 2, 9, 6, 5, 6, 7, 1, 5, 7, 9, 0, 2, 8, 9, 0, 2, 0, 4, 7, 3, 5, 3, 9, 7, 6, 7, 7, 3, 1, 0, 5, 1, 0, 6, 4, 4, 1, 3, 4, 5, 2, 8, 4, 6, 5, 1, 4, 4, 9, 3, 3, 3, 9, 6, 9, 2, 9, 8, 1, 3, 2, 0, 9, 6, 6, 7, 5, 4, 1, 8, 5, 8, 6, 9, 5, 0, 8, 4, 0, 5, 5, 0, 8, 9, 6, 6, 6
Offset: 0
Examples
0.40717638729656715790289020473539767731...
Programs
-
Mathematica
Omega=LambertW[1]; xi=ArcTan[Sqrt[Omega]]; N[Cos[xi]^4,120] Omega=LambertW[1]; N[1/(Omega+1)^2,120] Omega=LambertW[1]; omega=1/Omega; NIntegrate[(-t/LambertW[-1,-t*Omega^omega])^Omega,{t,0,1}, WorkingPrecision->120]
-
PARI
cos(atan(sqrt(lambertw(1))))^4
-
PARI
my(Omega=lambertw(1)); 1/(Omega+1)^2
Formula
Equals Integral_{t=0..1} (-t/LambertW(-1,-t*Omega^omega))^Omega, where omega=1/Omega=1/LambertW(1).
Equals A115287^2. - Vaclav Kotesovec, Mar 12 2021