cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A342359 Decimal expansion of arctan(sqrt(Omega)), where Omega=LambertW(1) is the Omega constant.

Original entry on oeis.org

6, 4, 5, 4, 7, 5, 2, 4, 4, 5, 6, 5, 0, 0, 3, 9, 2, 4, 4, 3, 5, 7, 3, 1, 5, 5, 4, 5, 6, 6, 0, 6, 6, 3, 6, 5, 2, 2, 4, 6, 7, 7, 2, 0, 5, 5, 9, 4, 0, 2, 1, 5, 1, 6, 1, 8, 1, 6, 8, 0, 0, 6, 7, 5, 3, 1, 7, 5, 0, 9, 5, 5, 3, 7, 3, 1, 2, 5, 6, 8, 8, 3, 6, 5, 1, 3, 9, 2, 5, 3, 9, 2, 7, 1, 9, 0
Offset: 0

Views

Author

Gleb Koloskov, Mar 09 2021

Keywords

Comments

The sine and the cosine of this angle appears in the values of two definite integrals that involve non-principal real branch of the Lambert W function, see A342360 and A342361.

Examples

			0.6454752445650039244357315545660663652246772055940215161816...
		

Crossrefs

Programs

  • Mathematica
    Omega=LambertW[1]; xi=ArcTan[Sqrt[Omega]]; N[xi,120]
  • PARI
    atan(sqrt(lambertw(1)))

Formula

Equals arctan(sqrt(LambertW(1))).

A342361 Decimal expansion of 1/(omega+1)^2, where omega=1/LambertW(1).

Original entry on oeis.org

1, 3, 0, 9, 6, 8, 9, 0, 0, 5, 6, 6, 3, 4, 5, 6, 0, 0, 8, 5, 8, 0, 7, 5, 4, 3, 3, 6, 9, 5, 6, 3, 7, 0, 4, 8, 4, 2, 2, 6, 4, 2, 9, 6, 1, 5, 5, 6, 4, 7, 3, 1, 8, 4, 3, 0, 5, 9, 6, 7, 0, 0, 9, 6, 2, 9, 1, 2, 9, 0, 0, 7, 5, 5, 4, 0, 2, 1, 6, 9, 2, 6, 1, 3, 0, 8, 0, 3, 5, 0, 0, 6, 8, 6, 1, 1
Offset: 0

Views

Author

Gleb Koloskov, Mar 09 2021

Keywords

Examples

			0.1309689005663456008580754336956370484226429615564731843
		

Crossrefs

Programs

  • Mathematica
    Omega=LambertW[1]; xi=ArcTan[Sqrt[Omega]]; N[Sin[xi]^4,120]
    omega=1/LambertW[1]; N[1/(omega+1)^2,120]
    Omega=LambertW[1]; omega=1/Omega; NIntegrate[(-t/LambertW[-1,-t*Omega^omega])^omega,{t,0,1}, WorkingPrecision->120]
    RealDigits[1/(1/LambertW[1]+1)^2,10,120][[1]] (* Harvey P. Dale, Mar 26 2025 *)
  • PARI
    my(Omega=lambertw(1), xi=atan(sqrt(Omega))); sin(xi)^4
    
  • PARI
    1/(1/lambertw(1)+1)^2

Formula

Equals Integral_{t=0..1} (-t/W(-1,-t*Omega^omega))^omega, where omega = 1/Omega = 1/LambertW(1).
Equals sin(A342359)^4 = 1/(A030797+1)^2 = (1-sqrt(A342360))^2.
Showing 1-2 of 2 results.