cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A342359 Decimal expansion of arctan(sqrt(Omega)), where Omega=LambertW(1) is the Omega constant.

Original entry on oeis.org

6, 4, 5, 4, 7, 5, 2, 4, 4, 5, 6, 5, 0, 0, 3, 9, 2, 4, 4, 3, 5, 7, 3, 1, 5, 5, 4, 5, 6, 6, 0, 6, 6, 3, 6, 5, 2, 2, 4, 6, 7, 7, 2, 0, 5, 5, 9, 4, 0, 2, 1, 5, 1, 6, 1, 8, 1, 6, 8, 0, 0, 6, 7, 5, 3, 1, 7, 5, 0, 9, 5, 5, 3, 7, 3, 1, 2, 5, 6, 8, 8, 3, 6, 5, 1, 3, 9, 2, 5, 3, 9, 2, 7, 1, 9, 0
Offset: 0

Views

Author

Gleb Koloskov, Mar 09 2021

Keywords

Comments

The sine and the cosine of this angle appears in the values of two definite integrals that involve non-principal real branch of the Lambert W function, see A342360 and A342361.

Examples

			0.6454752445650039244357315545660663652246772055940215161816...
		

Crossrefs

Programs

  • Mathematica
    Omega=LambertW[1]; xi=ArcTan[Sqrt[Omega]]; N[xi,120]
  • PARI
    atan(sqrt(lambertw(1)))

Formula

Equals arctan(sqrt(LambertW(1))).

A342360 Decimal expansion of 1/(Omega+1)^2, where Omega=LambertW(1) is the Omega constant.

Original entry on oeis.org

4, 0, 7, 1, 7, 6, 3, 8, 7, 2, 9, 6, 5, 6, 7, 1, 5, 7, 9, 0, 2, 8, 9, 0, 2, 0, 4, 7, 3, 5, 3, 9, 7, 6, 7, 7, 3, 1, 0, 5, 1, 0, 6, 4, 4, 1, 3, 4, 5, 2, 8, 4, 6, 5, 1, 4, 4, 9, 3, 3, 3, 9, 6, 9, 2, 9, 8, 1, 3, 2, 0, 9, 6, 6, 7, 5, 4, 1, 8, 5, 8, 6, 9, 5, 0, 8, 4, 0, 5, 5, 0, 8, 9, 6, 6, 6
Offset: 0

Views

Author

Gleb Koloskov, Mar 09 2021

Keywords

Examples

			0.40717638729656715790289020473539767731...
		

Crossrefs

Programs

  • Mathematica
    Omega=LambertW[1]; xi=ArcTan[Sqrt[Omega]]; N[Cos[xi]^4,120]
    Omega=LambertW[1]; N[1/(Omega+1)^2,120]
    Omega=LambertW[1]; omega=1/Omega; NIntegrate[(-t/LambertW[-1,-t*Omega^omega])^Omega,{t,0,1}, WorkingPrecision->120]
  • PARI
    cos(atan(sqrt(lambertw(1))))^4
    
  • PARI
    my(Omega=lambertw(1)); 1/(Omega+1)^2

Formula

Equals cos(A342359)^4 = 1/(A030178+1)^2 = (1-sqrt(A342361))^2.
Equals Integral_{t=0..1} (-t/LambertW(-1,-t*Omega^omega))^Omega, where omega=1/Omega=1/LambertW(1).
Equals A115287^2. - Vaclav Kotesovec, Mar 12 2021
Showing 1-2 of 2 results.