A342414 a(n) = A003415(n) / gcd(phi(n),A003415(n)), where A003415(n) is the arithmetic derivative of n, and phi is Euler totient function.
0, 1, 1, 2, 1, 5, 1, 3, 1, 7, 1, 4, 1, 3, 1, 4, 1, 7, 1, 3, 5, 13, 1, 11, 1, 5, 3, 8, 1, 31, 1, 5, 7, 19, 1, 5, 1, 7, 2, 17, 1, 41, 1, 12, 13, 25, 1, 7, 1, 9, 5, 7, 1, 9, 2, 23, 11, 31, 1, 23, 1, 11, 17, 6, 3, 61, 1, 9, 13, 59, 1, 13, 1, 13, 11, 20, 3, 71, 1, 11, 2, 43, 1, 31, 11, 15, 4, 7, 1, 41, 5, 24, 17, 49, 1, 17
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..12500
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Programs
-
Mathematica
Array[#1/GCD[#1, #2] & @@ {If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &@ Abs[#], EulerPhi[#]} &, 96] (* Michael De Vlieger, Mar 11 2021 *)
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A342414(n) = { my(u=A003415(n)); (u/gcd(eulerphi(n),u)); };