cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A342423 a(n) = Sum_{k=1..n} gcd(k,n)^gcd(k,n).

Original entry on oeis.org

1, 5, 29, 262, 3129, 46693, 823549, 16777484, 387420549, 10000003145, 285311670621, 8916100495490, 302875106592265, 11112006826381589, 437893890380865741, 18446744073726329368, 827240261886336764193, 39346408075296925089309
Offset: 1

Views

Author

Seiichi Manyama, Mar 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[GCD[k, n]^GCD[k, n], {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Mar 11 2021 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^gcd(k, n));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^d);

Formula

a(n) = Sum_{d|n} phi(n/d) * d^d.

A342437 a(n) = Sum_{k=1..n} gcd(k,n)^(n/gcd(k,n) - 1).

Original entry on oeis.org

1, 2, 3, 5, 5, 14, 7, 25, 25, 74, 11, 161, 13, 398, 383, 657, 17, 2110, 19, 3341, 4485, 10262, 23, 19569, 2521, 49178, 39547, 74441, 29, 221462, 31, 328737, 590753, 1048610, 103379, 1905565, 37, 4718630, 6377655, 5573801, 41, 22462826, 43, 31459985, 40634221, 92274734, 47
Offset: 1

Views

Author

Seiichi Manyama, Mar 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[GCD[k, n]^(n/GCD[k, n] - 1), {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Mar 12 2021 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^(n/gcd(k, n)-1));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^(n/d-1));

Formula

a(n) = Sum_{d|n} phi(n/d) * d^(n/d-1).
If p is prime, a(p) = p.

A344195 a(n) = Sum_{k=1..n} tau(gcd(k,n))^(n/gcd(k,n)), where tau(n) is the number of divisors of n.

Original entry on oeis.org

1, 3, 4, 9, 6, 26, 8, 49, 25, 140, 12, 240, 14, 782, 156, 1215, 18, 3349, 20, 5130, 800, 20498, 24, 19558, 151, 98324, 3148, 111492, 30, 270624, 32, 551091, 20520, 2097176, 924, 1716189, 38, 9437210, 98348, 8630496, 42, 25362724, 44, 43714584, 266346, 184549406, 48, 137141048, 813, 671096867
Offset: 1

Views

Author

Seiichi Manyama, May 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * DivisorSigma[0, #]^(n/#) &]; Array[a, 50] (* Amiram Eldar, May 11 2021 *)
  • PARI
    a(n) = sum(k=1, n, numdiv(gcd(k, n))^(n/gcd(k, n)));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d)^(n/d));

Formula

a(n) = Sum_{d|n} phi(n/d) * tau(d)^(n/d).
If p is prime, a(p) = 1 + p.
Showing 1-3 of 3 results.