A342438 Primitive arithmetic numbers: terms of A003601 not of the form m*q where m, q > 1 are both terms of A003601 with gcd(m,q) = 1.
1, 3, 5, 6, 7, 11, 13, 14, 17, 19, 20, 22, 23, 27, 29, 31, 37, 38, 41, 43, 44, 45, 46, 47, 49, 53, 54, 56, 59, 61, 62, 67, 68, 71, 73, 79, 83, 86, 89, 92, 94, 96, 97, 99, 101, 103, 107, 109, 113, 116, 118, 125, 126, 127, 131, 134, 137, 139, 142, 149, 150, 151
Offset: 1
Keywords
Examples
6 and 17 are arithmetic numbers, gcd(6,17)=1, so 102 is a non-primitive arithmetic number while 6 and 17 are primitive arithmetic numbers. 7 is an arithmetic number; gcd(7,7) = 7; as sigma(49) = 57 and tau(49) = 3, sigma(49)/tau(49) = 19, so 7*7 = 49 is a primitive term because gcd(7,7) <> 1.
Crossrefs
Programs
-
Mathematica
arithQ[n_] := arithQ[n] = Divisible[DivisorSigma[1, n], DivisorSigma[0, n]]; primArithQ[n_] := primArithQ[n] = (n == 1) || (arithQ[n] && !AnyTrue[Most @ Rest @ Divisors[n], CoprimeQ[#, n/#] && arithQ[#] && arithQ[n/#] &]); Select[Range[150], primArithQ] (* Amiram Eldar, Mar 12 2021 *)
-
PARI
isar(n) = !(sigma(n)%numdiv(n)); \\ A003601 isok(n) = {if (isar(n), fordiv(n, d, if ((d>1) && (d
Michel Marcus, Mar 12 2021
Extensions
Name clarified by N. J. A. Sloane, Mar 13 2021
Comments