cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342463 a(n) = A342001(A342456(n)); "wild part" of the arithmetic derivative of A342456(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 12, 8, 1, 2, 6, 4, 50, 24, 16, 16, 1, 2, 6, 4, 126, 62, 46, 26, 1486, 100, 1142, 48, 2056, 32, 342, 10, 1, 2, 6, 4, 94, 24, 72, 18, 242, 120, 1588, 54, 3408, 92, 1740, 22, 6846, 2972, 4340, 766, 5048, 1374, 652, 376, 71156, 22710, 20390, 64, 738580, 4272, 568, 20, 1, 2, 6, 4, 264, 12, 196, 8, 318
Offset: 0

Views

Author

Antti Karttunen, Mar 15 2021

Keywords

Comments

Like in A342462, also here the subsequences starting at each n = 2^k seem to be slowly converging towards A329886: 1, 2, 6, 4, 30, 12, 36, 8, 210, 60, ...

Crossrefs

Programs

  • Mathematica
    Block[{a, f, r = MixedRadix[Reverse@ Prime@ Range@ 24]}, f[n_] := Times @@ MapIndexed[Prime[First[#2]]^#1 &, Reverse@ IntegerDigits[n, r]]; a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ@ n, (Times @@ Map[Prime[PrimePi@ #1 + 1]^#2 & @@ # &, FactorInteger[#]] - Boole[# == 1])*2^IntegerExponent[#, 2] &[a[n/2]], 2 a[(n - 1)/2]]; Array[#1/#2 & @@ {If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &@ Abs[#], #/Times @@ FactorInteger[#][[All, 1]]} &@ f@ a[#] &, 73, 0]] (* Michael De Vlieger, Mar 17 2021 *)
  • PARI
    \\ Needs also code from A342456.
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A342001(n) = (A003415(n) / A003557(n));
    A342463(n) = A342001(A342456(n));

Formula

a(n) = A342001(A342456(n)) = A342002(A329886(n)) = A342920(A005940(1+n)).