cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A342492 Number of compositions of n with weakly increasing first quotients.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 17, 26, 37, 52, 73, 95, 125, 163, 208, 261, 330, 407, 498, 607, 734, 881, 1056, 1250, 1480, 1738, 2029, 2359, 2742, 3160, 3635, 4169, 4760, 5414, 6151, 6957, 7861, 8858, 9952, 11148, 12483, 13934, 15526, 17267, 19173, 21252, 23535, 25991
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2021

Keywords

Comments

Also called log-concave-up compositions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The composition (4,2,1,2,3) has first quotients (1/2,1/2,2,3/2) so is not counted under a(12), even though the first differences (-2,-1,1,1) are weakly increasing.
The a(1) = 1 through a(6) = 17 compositions:
  (1)  (2)    (3)      (4)        (5)          (6)
       (1,1)  (1,2)    (1,3)      (1,4)        (1,5)
              (2,1)    (2,2)      (2,3)        (2,4)
              (1,1,1)  (3,1)      (3,2)        (3,3)
                       (1,1,2)    (4,1)        (4,2)
                       (2,1,1)    (1,1,3)      (5,1)
                       (1,1,1,1)  (2,1,2)      (1,1,4)
                                  (3,1,1)      (2,1,3)
                                  (1,1,1,2)    (2,2,2)
                                  (2,1,1,1)    (3,1,2)
                                  (1,1,1,1,1)  (4,1,1)
                                               (1,1,1,3)
                                               (2,1,1,2)
                                               (3,1,1,1)
                                               (1,1,1,1,2)
                                               (2,1,1,1,1)
                                               (1,1,1,1,1,1)
		

Crossrefs

The weakly decreasing version is A069916.
The version for differences instead of quotients is A325546.
The strictly increasing version is A342493.
The unordered version is A342497, ranked by A342523.
The strict unordered version is A342516.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A000929 counts partitions with all adjacent parts x >= 2y.
A001055 counts factorizations.
A002843 counts compositions with all adjacent parts x <= 2y.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.

Programs

  • Maple
    b:= proc(n, q, l) option remember; `if`(n=0, 1, add(
         `if`(q=0 or q>=l/j, b(n-j, l/j, j), 0), j=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 25 2021
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],LessEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]
    (* Second program: *)
    b[n_, q_, l_] := b[n, q, l] = If[n == 0, 1, Sum[
         If[q == 0 || q >= l/j, b[n - j, l/j, j], 0], {j, 1, n}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Extensions

a(21)-a(47) from Alois P. Heinz, Mar 25 2021

A342498 Number of integer partitions of n with strictly increasing first quotients.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 5, 6, 8, 9, 12, 12, 14, 16, 18, 20, 24, 26, 27, 30, 35, 37, 45, 47, 52, 56, 61, 65, 72, 77, 83, 90, 95, 99, 109, 117, 127, 135, 144, 151, 164, 172, 181, 197, 209, 222, 239, 249, 263, 280, 297, 310, 332, 349, 368, 391, 412, 433, 457, 480, 503
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

Also the number of reversed integer partitions of n with strictly increasing first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The partition y = (13,7,2,1) has first quotients (7/13,2/7,1/2) so is not counted under a(23). However, the first differences (-6,-5,-1) are strictly increasing, so y is counted under A240027(23).
The a(1) = 1 through a(9) = 9 partitions:
  (1)  (2)   (3)   (4)    (5)    (6)    (7)    (8)    (9)
       (11)  (21)  (22)   (32)   (33)   (43)   (44)   (54)
                   (31)   (41)   (42)   (52)   (53)   (63)
                   (211)  (311)  (51)   (61)   (62)   (72)
                                 (411)  (322)  (71)   (81)
                                        (511)  (422)  (522)
                                               (521)  (621)
                                               (611)  (711)
                                                      (5211)
		

Crossrefs

The version for differences instead of quotients is A240027.
The ordered version is A342493.
The weakly increasing version is A342497.
The strictly decreasing version is A342499.
The strict case is A342517.
The Heinz numbers of these partitions are A342524.
A000005 counts constant partitions.
A000009 counts strict partitions.
A000041 counts partitions.
A001055 counts factorizations.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A342096 counts partitions with adjacent x < 2y (strict: A342097).
A342098 counts partitions with adjacent parts x > 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Less@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]

A342517 Number of strict integer partitions of n with strictly increasing first quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 8, 10, 11, 13, 14, 16, 16, 19, 21, 23, 27, 29, 31, 34, 36, 40, 43, 47, 49, 53, 56, 59, 66, 71, 75, 81, 86, 89, 97, 104, 110, 119, 123, 132, 143, 148, 156, 168, 177, 184, 198, 209, 218, 232, 246, 257, 269, 282, 294
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2021

Keywords

Comments

Also the number of reversed strict partitions of n with strictly increasing first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The partition (14,8,5,3,2) has first quotients (4/7,5/8,3/5,2/3) so is not counted under a(32), even though the differences (-6,-3,-2,-1) are strictly increasing.
The a(1) = 1 through a(13) = 10 partitions (A..D = 10..13):
  1   2   3    4    5    6    7    8     9     A     B     C     D
          21   31   32   42   43   53    54    64    65    75    76
                    41   51   52   62    63    73    74    84    85
                              61   71    72    82    83    93    94
                                   521   81    91    92    A2    A3
                                         621   532   A1    B1    B2
                                               721   632   732   C1
                                                     821   921   643
                                                                 832
                                                                 A21
		

Crossrefs

The version for differences instead of quotients is A179254.
The version for chains of divisors is A342086 (non-strict: A057567).
The non-strict ordered version is A342493.
The non-strict version is A342498 (ranking: A342524).
The weakly increasing version is A342516.
The strictly decreasing version is A342518.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A045690 counts sets with maximum n with all adjacent elements y < 2x.
A167865 counts strict chains of divisors > 1 summing to n.
A342096 counts partitions with all adjacent parts x < 2y (strict: A342097).
A342098 counts (strict) partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Less@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]

A342524 Heinz numbers of integer partitions with strictly increasing first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 84 are {1,1,2,4}, with first quotients (1,2,2), so 84 is not in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
    8: {1,1,1}
   16: {1,1,1,1}
   18: {1,2,2}
   24: {1,1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   48: {1,1,1,1,2}
   50: {1,3,3}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

For differences instead of quotients we have A325456 (count: A240027).
For multiplicities (prime signature) instead of quotients we have A334965.
The version counting strict divisor chains is A342086.
These partitions are counted by A342498 (strict: A342517, ordered: A342493).
The weakly increasing version is A342523.
The strictly decreasing version is A342525.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.
A342098 counts (strict) partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Less@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]

A342494 Number of compositions of n with strictly decreasing first quotients.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 12, 15, 21, 30, 39, 50, 65, 82, 103, 129, 160, 196, 240, 293, 352, 422, 500, 593, 706, 832, 974, 1138, 1324, 1534, 1783, 2054, 2362, 2712, 3108, 3552, 4051, 4606, 5232, 5935, 6713, 7573, 8536, 9597, 10773, 12085, 13534, 15119, 16874, 18809
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The composition (1,2,3,4,2) has first quotients (2,3/2,4/3,1/2) so is counted under a(12).
The a(1) = 1 through a(6) = 12 compositions:
  (1)  (2)    (3)    (4)      (5)      (6)
       (1,1)  (1,2)  (1,3)    (1,4)    (1,5)
              (2,1)  (2,2)    (2,3)    (2,4)
                     (3,1)    (3,2)    (3,3)
                     (1,2,1)  (4,1)    (4,2)
                              (1,2,2)  (5,1)
                              (1,3,1)  (1,2,3)
                              (2,2,1)  (1,3,2)
                                       (1,4,1)
                                       (2,3,1)
                                       (3,2,1)
                                       (1,2,2,1)
		

Crossrefs

The weakly decreasing version is A069916.
The version for differences instead of quotients is A325548.
The strictly increasing version is A342493.
The unordered version is A342499, ranked by A342525.
The strict unordered version is A342518.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A001055 counts factorizations.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A274199 counts compositions with all adjacent parts x < 2y.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Greater@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]

Extensions

a(21)-a(49) from Alois P. Heinz, Mar 18 2021
Showing 1-5 of 5 results.