A342502 Gaps between first elements of prime quintuples of the form (p, p+2, p+6, p+12, p+14). The quintuples are abutting: twin/cousin/sexy/twin pairs.
12, 210, 1050, 330, 1920, 390, 720, 150, 22950, 10710, 780, 5040, 27060, 26040, 2340, 13440, 8880, 360, 1950, 41370, 17790, 3630, 4320, 6510, 870, 76620, 15210, 21540, 5760, 29100, 2340, 66990, 1950, 3360, 5370, 16800, 6930, 40530, 4230, 3570, 15510, 10320
Offset: 1
Keywords
Examples
The first 4 terms of the sequence are 12, 210, 1050, 330, since the gaps between first elements of the first five quintuples {5,7,11,17,19}, {17,19,23,29,31}, {227,229,233,239,241}, {1277,1279,1283,1289,1291}, {1607,1609,1613,1619,1621} are, 17-5=12, 227-17=210, etc.
Links
- T. Forbes, Prime k-tuplets
- Eric Weisstein's World of Mathematics, Prime Triplet.
Crossrefs
Cf. A078946.
Programs
-
Maple
b:= proc(n) option remember; local p; p:= `if`(n=1, 1, b(n-1)); do p:= nextprime(p); if andmap(isprime, [p+2, p+6, p+12, p+14]) then return p fi od end: a:= n-> b(n+1)-b(n): seq(a(n), n=1..65); # Alois P. Heinz, Mar 14 2021
-
Mathematica
b[n_] := b[n] = Module[{p}, p = If[n == 1, 1, b[n-1]]; While[True, p = NextPrime[p]; If[AllTrue[{p+2, p+6, p+12, p+14}, PrimeQ], Return[p]]]]; a[n_] := b[n+1]-b[n]; Table[a[n], {n, 1, 65}] (* Jean-François Alcover, May 14 2022, after Alois P. Heinz *)