A342499
Number of integer partitions of n with strictly decreasing first quotients.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 5, 5, 7, 9, 10, 11, 14, 15, 18, 20, 23, 26, 31, 34, 39, 42, 45, 51, 58, 65, 70, 78, 83, 91, 102, 111, 122, 133, 145, 158, 170, 182, 202, 217, 231, 248, 268, 285, 307, 332, 354, 374, 404, 436, 468, 502, 537, 576, 618, 654, 694, 737, 782, 830
Offset: 0
The partition (6,6,3,1) has first quotients (1,1/2,1/3) so is counted under a(16).
The a(1) = 1 through a(9) = 9 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(221) (51) (61) (62) (72)
(321) (331) (71) (81)
(332) (432)
(431) (441)
(531)
(3321)
The version for differences instead of quotients is
A320470.
The strictly increasing version is
A342498.
The weakly decreasing version is
A342513.
The Heinz numbers of these partitions are listed by
A342525.
A000005 counts constant partitions.
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A342098 counts partitions with adjacent parts x > 2y.
-
Table[Length[Select[IntegerPartitions[n],Greater@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]
A342518
Number of strict integer partitions of n with strictly decreasing first quotients.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 8, 9, 11, 12, 13, 17, 18, 21, 24, 28, 30, 34, 37, 41, 47, 52, 56, 63, 68, 72, 83, 89, 99, 108, 117, 128, 139, 149, 163, 179, 189, 203, 217, 233, 250, 272, 289, 305, 329, 355, 381, 410, 438, 471, 505, 540, 571, 607, 645, 683, 726
Offset: 0
The strict partition (12,10,6,3,1) has first quotients (5/6,3/5,1/2,1/3) so is counted under a(32), even though the differences (-2,-4,-3,-2) are not strictly decreasing.
The a(1) = 1 through a(13) = 12 partitions (A..D = 10..13):
1 2 3 4 5 6 7 8 9 A B C D
21 31 32 42 43 53 54 64 65 75 76
41 51 52 62 63 73 74 84 85
321 61 71 72 82 83 93 94
431 81 91 92 A2 A3
432 541 A1 B1 B2
531 631 542 543 C1
4321 641 642 652
731 651 742
741 751
831 841
5431
The version for differences instead of quotients is
A320388.
The non-strict ordered version is
A342494.
The strictly increasing version is
A342517.
The weakly decreasing version is
A342519.
A045690 counts sets with maximum n with all adjacent elements y < 2x.
A167865 counts strict chains of divisors > 1 summing to n.
A342096 counts partitions with all adjacent parts x < 2y (strict:
A342097).
A342098 counts (strict) partitions with all adjacent parts x > 2y.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Greater@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]
A342524
Heinz numbers of integer partitions with strictly increasing first quotients.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91
Offset: 1
The prime indices of 84 are {1,1,2,4}, with first quotients (1,2,2), so 84 is not in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
8: {1,1,1}
16: {1,1,1,1}
18: {1,2,2}
24: {1,1,1,2}
27: {2,2,2}
30: {1,2,3}
32: {1,1,1,1,1}
36: {1,1,2,2}
40: {1,1,1,3}
42: {1,2,4}
48: {1,1,1,1,2}
50: {1,3,3}
54: {1,2,2,2}
56: {1,1,1,4}
60: {1,1,2,3}
64: {1,1,1,1,1,1}
For differences instead of quotients we have
A325456 (count:
A240027).
For multiplicities (prime signature) instead of quotients we have
A334965.
The version counting strict divisor chains is
A342086.
The weakly increasing version is
A342523.
The strictly decreasing version is
A342525.
A167865 counts strict chains of divisors > 1 summing to n.
A318991/
A318992 rank reversed partitions with/without integer quotients.
A342098 counts (strict) partitions with all adjacent parts x > 2y.
Cf.
A048767,
A056239,
A112798,
A124010,
A130091,
A169594,
A253249,
A325351,
A325352,
A334997,
A342530.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],Less@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]
A342494
Number of compositions of n with strictly decreasing first quotients.
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 12, 15, 21, 30, 39, 50, 65, 82, 103, 129, 160, 196, 240, 293, 352, 422, 500, 593, 706, 832, 974, 1138, 1324, 1534, 1783, 2054, 2362, 2712, 3108, 3552, 4051, 4606, 5232, 5935, 6713, 7573, 8536, 9597, 10773, 12085, 13534, 15119, 16874, 18809
Offset: 0
The composition (1,2,3,4,2) has first quotients (2,3/2,4/3,1/2) so is counted under a(12).
The a(1) = 1 through a(6) = 12 compositions:
(1) (2) (3) (4) (5) (6)
(1,1) (1,2) (1,3) (1,4) (1,5)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3)
(1,2,1) (4,1) (4,2)
(1,2,2) (5,1)
(1,3,1) (1,2,3)
(2,2,1) (1,3,2)
(1,4,1)
(2,3,1)
(3,2,1)
(1,2,2,1)
The weakly decreasing version is
A069916.
The version for differences instead of quotients is
A325548.
The strictly increasing version is
A342493.
The strict unordered version is
A342518.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A274199 counts compositions with all adjacent parts x < 2y.
Cf.
A003242,
A008965,
A048004,
A059966,
A067824,
A167606,
A253249,
A318991,
A318992,
A342527,
A342528.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Greater@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]
A342526
Heinz numbers of integer partitions with weakly decreasing first quotients.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 87
Offset: 1
The prime indices of 294 are {1,2,4,4}, with first quotients (2,2,1), so 294 is in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
12: {1,1,2}
20: {1,1,3}
24: {1,1,1,2}
28: {1,1,4}
36: {1,1,2,2}
40: {1,1,1,3}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
52: {1,1,6}
56: {1,1,1,4}
60: {1,1,2,3}
63: {2,2,4}
66: {1,2,5}
68: {1,1,7}
72: {1,1,1,2,2}
76: {1,1,8}
78: {1,2,6}
80: {1,1,1,1,3}
84: {1,1,2,4}
The version counting strict divisor chains is
A057567.
For multiplicities (prime signature) instead of quotients we have
A242031.
For differences instead of quotients we have
A325361 (count:
A320466).
The weakly increasing version is
A342523.
The strictly decreasing version is
A342525.
A000929 counts partitions with all adjacent parts x >= 2y.
A002843 counts compositions with all adjacent parts x <= 2y.
A167865 counts strict chains of divisors > 1 summing to n.
A318991/
A318992 rank reversed partitions with/without integer quotients.
Cf.
A048767,
A056239,
A067824,
A112798,
A238710,
A253249,
A325351,
A325352,
A325405,
A334997,
A342086,
A342191.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],GreaterEqual@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]
Showing 1-5 of 5 results.
Comments