cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342529 Number of compositions of n with distinct first quotients.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 19, 36, 67, 114, 197, 322, 564, 976, 1614, 2729, 4444, 7364, 12357, 20231, 33147, 53973, 87254, 140861, 227535, 368050, 589706, 940999, 1497912, 2378260, 3774297, 5964712, 9416411, 14822087, 23244440, 36420756
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The composition (2,1,2,3) has first quotients (1/2,2,3/2) so is counted under a(8).
The a(1) = 1 through a(5) = 13 compositions:
  (1)  (2)    (3)    (4)      (5)
       (1,1)  (1,2)  (1,3)    (1,4)
              (2,1)  (2,2)    (2,3)
                     (3,1)    (3,2)
                     (1,1,2)  (4,1)
                     (1,2,1)  (1,1,3)
                     (2,1,1)  (1,2,2)
                              (1,3,1)
                              (2,1,2)
                              (2,2,1)
                              (3,1,1)
                              (1,1,2,1)
                              (1,2,1,1)
		

Crossrefs

The version for differences instead of quotients is A325545.
The version for equal first quotients is A342495.
The unordered version is A342514, ranked by A342521.
The strict unordered version is A342520.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Divide@@@Partition[#,2,1]&]],{n,0,15}]

Extensions

a(21)-a(35) from Alois P. Heinz, Jan 16 2025