A342531 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with maximal descent k, n >= 0, 0 <= k <= n.
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 2, 1, 1, 0, 1, 0, 0, 1, 2, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 2, 2, 1, 1, 1, 0, 1, 0, 0, 1, 1, 2, 3, 1, 1, 1, 1, 0, 1, 0, 0
Offset: 0
Examples
Triangle begins: 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 2 1 1 0 1 0 0 1 2 1 1 1 1 0 1 0 0 1 1 2 2 1 1 1 0 1 0 0 1 1 2 3 1 1 1 1 0 1 0 0 1 1 3 2 3 1 1 1 1 0 1 0 0 1 1 3 3 3 2 1 1 1 1 0 1 0 0 1 1 3 4 3 3 2 1 1 1 1 0 1 0 0 1 3 3 4 4 3 2 2 1 1 1 1 0 1 0 0 1 0 5 5 5 4 3 2 2 1 1 1 1 0 1 0 0 1 1 4 7 5 5 4 2 2 2 1 1 1 1 0 1 0 0 1 2 5 6 7 6 4 4 2 2 2 1 1 1 1 0 1 0 0 1 1 5 9 7 7 6 4 3 2 2 2 1 1 1 1 0 1 0 0 1 1 6 9 9 7 8 5 4 3 2 2 2 1 1 1 1 0 1 0 0 Row n = 15 counts the following strict partitions (empty columns indicated by dots, A..F = 10..15): F 87 753 96 762 A5 A41 B4 B31 C3 C21 D2 . E1 . . 654 6432 852 843 861 9321 A32 54321 6531 7431 951 942 7521 8421
Links
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&If[Length[#]<=1,k==0,Max[Differences[Reverse[#]]]==k]&]],{n,0,15},{k,0,n}]
Comments