cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A342928 The smallest polygonal index of numbers that have exactly two different representations as polygonal numbers (A177029).

Original entry on oeis.org

3, 3, 4, 3, 4, 3, 4, 3, 5, 3, 3, 3, 4, 5, 3, 4, 3, 4, 3, 7, 4, 3, 3, 4, 3, 3, 5, 3, 3, 4, 4, 3, 5, 3, 4, 3, 8, 3, 4, 5, 3, 3, 4, 3, 3, 5, 4, 11, 3, 4, 5, 3, 4, 3, 7, 3, 4, 3, 3, 5, 3, 4, 3, 4, 3, 13, 4, 3, 3, 4, 3, 3, 4, 5, 3, 3, 4, 5, 3, 4, 3, 4, 5, 7, 3, 4
Offset: 1

Views

Author

Michel Marcus, Mar 29 2021

Keywords

Comments

By definition, a(n) can never be equal to 2. Up to 10^7, no n has been found with a(n) = 6, 10 or 16.

Examples

			6 is A177029(1); it is a 3-gonal and 6-gonal number; it is the 3rd triangular number so a(1) = 3.
9 is A177029(2); it is a 4-gonal and 9-gonal number; it is the 3rd square number so a(2) = 3.
		

Crossrefs

Programs

  • PARI
    row(n) = my(v=List()); fordiv(2*n, k, if(k<2, next); if(k==n, break); my(s=(2*n/k-4+2*k)/(k-1)); if(denominator(s)==1, listput(v, s))); Vecrev(v); \\ A177028
    lista(nn) = {for (n=3, nn, my(r = row(n)); if (#r == 2, my(k); ispolygonal(n, r[1], &k); print1(k, ", ")););}

A373921 The last entry in the difference table for {the n-th row of A177028 arranged in increasing order}.

Original entry on oeis.org

3, 4, 5, 3, 7, 8, 5, 7, 11, 7, 13, 14, 6, 12, 17, 11, 19, 20, 8, 17, 23, 15, 21, 26, 17, 19, 29, 19, 31, 32, 21, 27, 30, 6, 37, 38, 25, 32, 41, 27, 43, 44, 12, 37, 47, 31, 45, 50, 20, 42, 53, 35, 44, 56, 37, 47, 59, 39, 61, 62, 41, 44, 57, 12, 67, 68, 45, 49, 71, 47, 73, 74, 32
Offset: 3

Views

Author

Robert G. Wilson v, Jun 22 2024

Keywords

Comments

Inspired by A342772 and A187202.
The n-th row of A177028 are all integers k for which n is a k-gonal number.
As an example: row 10 of A177028 contain 3 and 10, because 10 is a 10-gonal number but also a triangular number.
-3n/2 < a(n) <= n.
a(n) = n if n is an odd prime (A065091), an odd composite number in A274967, or even numbers in A274968.
a(n) = 0: 231, tested up to 150000.
a(n) < 0: 441, 540, 561, 1089, 1128, 1296, 1521, 1701, 1716, 1881, 2016, 2211, 2541, 2556, 2601, ..., .
a(n) is negative less than 1% of the time.

Examples

			a(15) = 6, because the 15th row of A177028 is {3,6,15} -> {3,9} -> {6};
a(36) = 6, because the 36th row of A177028 is {3,4,13,36} -{1,9,23} - {8,14} -> {6};
a(225) = 37, because the 225th row of A177028 is {4,8,24,76,225} -> {4,16,52,149} -> {12,36,97} -> {24,61} -> {37};
a(561) = -82, because the 561st row of A177028 is {3,6,12,39,188,561} -> {3,6,27,149,373} -> {3,21,122,224} -> {18,101,102}, {83,1} -> {-82}; etc.
		

Crossrefs

Programs

  • Mathematica
    planeFigurateQ[n_, r_] := IntegerQ[((r -4) + Sqrt[(r -4)^2 + 8n (r -2)])/(2 (r -2))]; a[n_] := Block[{pg = Select[ Range[3, n], planeFigurateQ[n, #] &]}, Differences[pg, Length@ pg - 1][[1]]]; Array[a, 73, 3]
Showing 1-2 of 2 results.