A342561 List points (x,y,z) having integer coordinates, sorted first by R^2 = x^2 + y^2 + z^2 and in case of ties, then by z and last by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives x-coordinates.
0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 1, -1, -1, 1, 1, 0, -1, 0, 1, -1, -1, 1, 1, -1, -1, 1, 0, 2, 0, -2, 0, 0, 1, 0, -1, 0, 2, 0, -2, 0, 2, 1, -1, -2, -2, -1, 1, 2, 2, 0, -2, 0, 1, 0, -1, 0, 1, -1, -1, 1, 2, 1, -1, -2, -2, -1, 1, 2, 2, 1, -1, -2, -2, -1, 1, 2, 1, -1, -1, 1, 2, 0, -2, 0, 2, -2, -2, 2, 2, 0, -2, 0
Offset: 0
Keywords
Examples
n x y z R^2 phi/Pi 0 0 0 0 0 0.000 1 0 0 -1 1 0.000 2 1 0 0 1 0.000 3 0 1 0 1 0.500 4 -1 0 0 1 1.000 5 0 -1 0 1 1.500 6 0 0 1 1 0.000 7 1 0 -1 2 0.000 8 0 1 -1 2 0.500 9 -1 0 -1 2 1.000 10 0 -1 -1 2 1.500 11 1 1 0 2 0.250 12 -1 1 0 2 0.750 13 -1 -1 0 2 1.250 14 1 -1 0 2 1.750 15 1 0 1 2 0.000 16 0 1 1 2 0.500 17 -1 0 1 2 1.000 18 0 -1 1 2 1.500 19 1 1 -1 3 0.250 20 -1 1 -1 3 0.750 21 -1 -1 -1 3 1.250 22 1 -1 -1 3 1.750 23 1 1 1 3 0.250 24 -1 1 1 3 0.750 25 -1 -1 1 3 1.250 26 1 -1 1 3 1.750 27 0 0 -2 4 0.000 28 2 0 0 4 0.000 29 0 2 0 4 0.500
Links
- Hugo Pfoertner, Table of n, a(n) for n = 0..10130
Crossrefs
Programs
-
PARI
shell(n, Q=Qfb(1,0,1), L=List())={for(z=if(n, sqrtint((n-1)\3)+1), sqrtint(n), my(S=if(n>z^2, Set(apply(vecsort, abs(qfbsolve(Q, n-z^2, 3)))), [[0,0]])); foreach(S, s, forperm(concat(s,z), p, listput(L, p)))); for(i=1,3, for(j=1,#L, my(X=L[j]); (X[i]*=-1) && listput(L,X))); vecsort(L, (p,q)->if( p[3]!=q[3], p[3]-q[3], p[1]==q[1], q[2]-p[2], p[2]*q[2]<0, q[2]-p[2], (q[1]-p[1])*(p[2]+q[2])))} \\ Gives list of all points with Euclidean norm sqrt(n). A342561_vec=concat([[P[1] | P <- shell(n)] | n<-[0..7]]) \\ M. F. Hasler, Apr 27 2021
Comments