A342564 Numbers k such that 6*k + 1 is a prime that can be written as p*q + 2, with p and q being consecutive primes.
6, 13, 37, 73, 793, 3750, 5400, 8893, 9600, 10082, 12150, 12973, 15913, 16537, 26533, 27335, 29400, 32413, 39853, 54150, 63037, 69337, 82835, 113437, 126142, 134085, 185852, 277350, 290400, 370513, 432553, 478837, 531037, 585937, 667333, 768980, 837013, 889350
Offset: 1
Examples
a(1) = 6 because 6*6 + 1 = 37 can be written as 5*7 + 2.
Crossrefs
Programs
-
Maple
alist := proc(upto) local L, q, p, n, r; L := []; q := 2; for n from 1 to upto do p := q; q := nextprime(p); r := p * q + 1 ; if modp(r, 6) = 0 and isprime(r + 1) then L := [op(L), iquo(r, 6)] fi od; L end: alist(350); # Peter Luschny, Jun 20 2021
-
Mathematica
(Select[6Range[10^6]+1, PrimeQ[#] && MatchQ[FactorInteger[#-2], {{p_, 1}, {q_, 1}} /; q == NextPrime[p]]&]-1)/6 (* Jean-François Alcover, Jul 07 2021 *)
-
PARI
a342564(plim)={my(p1=5);forprime(p2=7,plim,my(p=p1*p2+2);if(isprime(p),print1((p-1)/6,", "));p1=p2)}; a342564(2400)
-
Python
from primesieve.numpy import n_primes from numbthy import isprime primesarray = numpy.array(n_primes(10000,1)) for i in range (0, 9999): totest = int(primesarray[i] * primesarray[i+1] + 2) if (isprime(totest)) and (((totest-1)%6) == 0): print((totest-1)//6) # Karl-Heinz Hofmann, Jun 20 2021