cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342564 Numbers k such that 6*k + 1 is a prime that can be written as p*q + 2, with p and q being consecutive primes.

Original entry on oeis.org

6, 13, 37, 73, 793, 3750, 5400, 8893, 9600, 10082, 12150, 12973, 15913, 16537, 26533, 27335, 29400, 32413, 39853, 54150, 63037, 69337, 82835, 113437, 126142, 134085, 185852, 277350, 290400, 370513, 432553, 478837, 531037, 585937, 667333, 768980, 837013, 889350
Offset: 1

Views

Author

Hugo Pfoertner, Jun 20 2021

Keywords

Examples

			a(1) = 6 because 6*6 + 1 = 37 can be written as 5*7 + 2.
		

Crossrefs

Cf. A048880, whose first term 17 = 3*5 + 2 cannot be written as 6*k + 1.

Programs

  • Maple
    alist := proc(upto) local L, q, p, n, r; L := []; q := 2;
    for n from 1 to upto do
        p := q; q := nextprime(p); r := p * q + 1 ;
        if modp(r, 6) = 0 and isprime(r + 1) then
           L := [op(L), iquo(r, 6)] fi od;
    L end: alist(350); # Peter Luschny, Jun 20 2021
  • Mathematica
    (Select[6Range[10^6]+1, PrimeQ[#] && MatchQ[FactorInteger[#-2], {{p_, 1}, {q_, 1}} /; q == NextPrime[p]]&]-1)/6 (* Jean-François Alcover, Jul 07 2021 *)
  • PARI
    a342564(plim)={my(p1=5);forprime(p2=7,plim,my(p=p1*p2+2);if(isprime(p),print1((p-1)/6,", "));p1=p2)};
    a342564(2400)
    
  • Python
    from primesieve.numpy import n_primes
    from numbthy import isprime
    primesarray = numpy.array(n_primes(10000,1))
    for i in range (0, 9999):
        totest = int(primesarray[i] * primesarray[i+1] + 2)
        if (isprime(totest)) and  (((totest-1)%6) == 0):
            print((totest-1)//6) # Karl-Heinz Hofmann, Jun 20 2021

Formula

a(n) = (A048880(n+1) - 1)/6, excluding A048880(1).