A342565 Numbers k such that 6*k - 1 is a prime that can be written as p*q - 2, with p and q being consecutive primes.
4265, 7842, 11265, 22815, 52265, 160065, 167662, 322003, 383542, 393722, 1016815, 1051677, 1150182, 1290842, 1372803, 1555498, 1826015, 2184065, 2808498, 3168265, 3200307, 3231062, 3333117, 3427680, 3676962, 3913915, 4042598, 4323102, 4537907, 4623542, 4798955
Offset: 1
Examples
a(1) = 4265, because the prime 25589 = 6*4265 - 1 can be written as 157*163 - 2, with 157 and 163 being consecutive primes.
Crossrefs
Programs
-
PARI
a342565(plim)={my(p1=5);forprime(p2=7,plim,my(p=p1*p2-2);if(isprime(p),print1((p+1)/6,", "));p1=p2)}; a342565(5400)
-
Python
from primesieve.numpy import n_primes from numbthy import isprime primesarray = numpy.array(n_primes(10000, 1)) for i in range (0, 9999): totest = int(primesarray[i] * primesarray[i+1] - 2) if (isprime(totest)) and (((totest+1)%6) == 0): print((totest+1)//6) # Karl-Heinz Hofmann, Jun 20 2021