A342572 Positive numbers all of whose prime factors are binary palindromes.
1, 3, 5, 7, 9, 15, 17, 21, 25, 27, 31, 35, 45, 49, 51, 63, 73, 75, 81, 85, 93, 105, 107, 119, 125, 127, 135, 147, 153, 155, 175, 189, 217, 219, 225, 243, 245, 255, 257, 279, 289, 313, 315, 321, 343, 357, 365, 375, 381, 405, 425, 441, 443, 459, 465, 511, 525, 527
Offset: 1
Examples
15 is a term since the binary representation of its prime factors, 3 and 5, are both palindromes: 11 and 101. 1 is a term because it has no prime factors, and "the empty set has every property". - _N. J. A. Sloane_, Jan 16 2022
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10010 (terms below 10^7)
Programs
-
Mathematica
seq[max_] := Module[{ps = Select[Range[max], PalindromeQ @ IntegerDigits[#, 2] && PrimeQ[#] &], s = {1}, s1, s2}, Do[p = ps[[k]]; emax = Floor@Log[p, max]; s1 = Join[{1}, p^Range[emax]]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= max &]; s = Union[s, s2], {k, 1, Length[ps]}]; s]; seq[1000] Join[{1},Module[{bps=Select[Prime[Range[200]],IntegerDigits[#,2] == Reverse[ IntegerDigits[ #,2]]&]},Select[ Range[Max[ bps]],SubsetQ[ bps,FactorInteger[#][[All,1]]]&]]] (* Harvey P. Dale, Jan 16 2022 *)
-
Python
from sympy import factorint def ispal(s): return s == s[::-1] def ok(n): return n > 0 and all(ispal(bin(f)[2:]) for f in factorint(n)) print([k for k in range(528) if ok(k)]) # Michael S. Branicky, Jan 17 2022
Formula
Sum_{n>=1} 1/a(n) = Product_{p in A016041} p/(p-1) = 2.52136...
Extensions
"Positive" added to definition by N. J. A. Sloane, Jan 16 2022