A342584 Minimum k such that all partial sums of the Leibniz series 4/1 - 4/3 + 4/5 - ... with k or more terms give a value of Pi correct to n decimal digits.
7, 25, 627, 2454, 136120, 376847, 2886750, 21546984, 278567575, 2437795018, 97974268952, 4836489478578, 4836489478578, 147895359776636, 308788493220129, 4193528956200935, 25999253094360135, 650467164953053602, 2161492060929047665, 26769019461318409710
Offset: 1
Examples
a(1) = 7 because the sum of the first 6 terms is approximately 2.9706, while the sum of the first 7 terms is approximately 3.2837, and all partial sums of more than 7 terms also have 3 as the first digit. a(20) = 26769019461318409710 because the sum of the first 26769019461318409709 terms is approximately 3.1415926535897932385000000000000000000007642, while the sum of the first 26769019461318409710 terms is approximately 3.14159265358979323842528, which agrees with Pi in the first 20 digits, as do all partial sums with more terms.
Links
- Ben Whitmore, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
a[n_]:=Module[{eps,num,check,pi}, Block[{$MaxExtraPrecision=Infinity}, pi[k_]:=If[EvenQ[k], Pi+PolyGamma[0,N[1/4,n+30]+k/2]-PolyGamma[0,3/4+k/2], pi[k+1]+4/(2k+1) ]; eps=Min[#,10^-(n-1)-#]&[Abs[Pi-Floor[Pi 10^(n-1)]/10^(n-1)]]; num=2Ceiling[k/2]/.FindRoot[PolyGamma[k/2+3/4]-PolyGamma[k/2+1/4]==eps, {k,10^(n-1)},WorkingPrecision->2n+30]; check[a_]:=RealDigits[pi[a],10,n][[1,-1]]==RealDigits[Pi,10,n][[1,-1]]; num-3+Position[check/@Range[num-3,num],False][[-1,1]] ] ]; a/@Range[20]
Comments