A342639 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = g(f(n) + f(k)) where g maps the complement, say s, of a finite set of nonnegative integers to the value Sum_{e >= 0 not in s} 2^e, f is the inverse of g, and "+" denotes the Minkowski sum.
0, 1, 1, 0, 3, 0, 3, 1, 1, 3, 0, 7, 2, 7, 0, 1, 1, 3, 3, 1, 1, 0, 3, 0, 15, 0, 3, 0, 7, 1, 5, 3, 3, 5, 1, 7, 0, 15, 2, 7, 0, 7, 2, 15, 0, 1, 1, 7, 3, 1, 1, 3, 7, 1, 1, 0, 3, 0, 31, 4, 11, 4, 31, 0, 3, 0, 3, 1, 1, 3, 7, 5, 5, 7, 3, 1, 1, 3, 0, 7, 2, 7, 0, 15, 6, 15, 0, 7, 2, 7, 0
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ---+------------------------------------------------------------------ 0| 0 1 0 3 0 1 0 7 0 1 0 3 0 1 0 15 1| 1 3 1 7 1 3 1 15 1 3 1 7 1 3 1 31 2| 0 1 2 3 0 5 2 7 0 1 2 11 0 5 2 15 3| 3 7 3 15 3 7 3 31 3 7 3 15 3 7 3 63 4| 0 1 0 3 0 1 4 7 0 1 0 3 0 9 4 15 5| 1 3 5 7 1 11 5 15 1 3 5 23 1 11 5 31 6| 0 1 2 3 4 5 6 7 0 9 2 11 4 13 6 15 7| 7 15 7 31 7 15 7 63 7 15 7 31 7 15 7 127 8| 0 1 0 3 0 1 0 7 0 1 0 3 0 1 8 15 9| 1 3 1 7 1 3 9 15 1 3 1 7 1 19 9 31 10| 0 1 2 3 0 5 2 7 0 1 10 11 0 5 10 15 11| 3 7 11 15 3 23 11 31 3 7 11 47 3 23 11 63 12| 0 1 0 3 0 1 4 7 0 1 0 3 8 9 12 15 13| 1 3 5 7 9 11 13 15 1 19 5 23 9 27 13 31 14| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15| 15 31 15 63 15 31 15 127 15 31 15 63 15 31 15 255
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010
- Wikipedia, Minkowski addition
Programs
-
PARI
T(n,k) = { my (v=0); for (x=0, #binary(n)+#binary(k), my (f=0); for (y=0, x, if (!bittest(n,y) && !bittest(k,x-y), f=1; break)); if (!f, v+=2^x)); return (v) }
Comments