cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A342639 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = g(f(n) + f(k)) where g maps the complement, say s, of a finite set of nonnegative integers to the value Sum_{e >= 0 not in s} 2^e, f is the inverse of g, and "+" denotes the Minkowski sum.

Original entry on oeis.org

0, 1, 1, 0, 3, 0, 3, 1, 1, 3, 0, 7, 2, 7, 0, 1, 1, 3, 3, 1, 1, 0, 3, 0, 15, 0, 3, 0, 7, 1, 5, 3, 3, 5, 1, 7, 0, 15, 2, 7, 0, 7, 2, 15, 0, 1, 1, 7, 3, 1, 1, 3, 7, 1, 1, 0, 3, 0, 31, 4, 11, 4, 31, 0, 3, 0, 3, 1, 1, 3, 7, 5, 5, 7, 3, 1, 1, 3, 0, 7, 2, 7, 0, 15, 6, 15, 0, 7, 2, 7, 0
Offset: 0

Views

Author

Rémy Sigrist, Mar 17 2021

Keywords

Comments

In other words:
- we consider the set S of sets s of nonnegative integers whose complement is finite,
- the function g encodes the "missing integers" in binary:
g(A001477 \ {1, 4}) = 2^1 + 2^4 = 18
- the function f is the inverse of g:
f(42) = f(2^1 + 2^3 + 2^5) = A001477 \ {1, 3, 5},
- the Minkowski sum of two sets, say U and V, is the set of sums u+v where u belongs to U and v belongs to V,
- the Minkowski sum is stable over S,
- and T provides an encoding for this operation.
This sequence has connections with A067138; here we consider complements of finite sets of nonnegative integers, there finite sets of nonnegative integers.

Examples

			Array T(n, k) begins:
  n\k|   0   1   2   3   4   5   6    7   8   9  10  11  12  13  14   15
  ---+------------------------------------------------------------------
    0|   0   1   0   3   0   1   0    7   0   1   0   3   0   1   0   15
    1|   1   3   1   7   1   3   1   15   1   3   1   7   1   3   1   31
    2|   0   1   2   3   0   5   2    7   0   1   2  11   0   5   2   15
    3|   3   7   3  15   3   7   3   31   3   7   3  15   3   7   3   63
    4|   0   1   0   3   0   1   4    7   0   1   0   3   0   9   4   15
    5|   1   3   5   7   1  11   5   15   1   3   5  23   1  11   5   31
    6|   0   1   2   3   4   5   6    7   0   9   2  11   4  13   6   15
    7|   7  15   7  31   7  15   7   63   7  15   7  31   7  15   7  127
    8|   0   1   0   3   0   1   0    7   0   1   0   3   0   1   8   15
    9|   1   3   1   7   1   3   9   15   1   3   1   7   1  19   9   31
   10|   0   1   2   3   0   5   2    7   0   1  10  11   0   5  10   15
   11|   3   7  11  15   3  23  11   31   3   7  11  47   3  23  11   63
   12|   0   1   0   3   0   1   4    7   0   1   0   3   8   9  12   15
   13|   1   3   5   7   9  11  13   15   1  19   5  23   9  27  13   31
   14|   0   1   2   3   4   5   6    7   8   9  10  11  12  13  14   15
   15|  15  31  15  63  15  31  15  127  15  31  15  63  15  31  15  255
		

Crossrefs

Programs

  • PARI
    T(n,k) = { my (v=0); for (x=0, #binary(n)+#binary(k), my (f=0); for (y=0, x, if (!bittest(n,y) && !bittest(k,x-y), f=1; break)); if (!f, v+=2^x)); return (v) }

Formula

T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, 0) = A135481(n).
T(n, 1) = A038712(n+1).
T(2^n-1, 2^k-1) = 2^(n+k)-1.
T(n, n) = A342640(n).

A342640 a(n) = A342639(n, n).

Original entry on oeis.org

0, 3, 2, 15, 0, 11, 6, 63, 0, 3, 10, 47, 8, 27, 14, 255, 0, 3, 2, 15, 0, 43, 22, 191, 0, 35, 10, 111, 24, 59, 30, 1023, 0, 3, 2, 15, 0, 11, 38, 63, 0, 3, 42, 175, 8, 91, 46, 767, 0, 3, 2, 143, 32, 43, 54, 447, 32, 99, 42, 239, 56, 123, 62, 4095, 0, 3, 2, 15, 0
Offset: 0

Views

Author

Rémy Sigrist, Mar 17 2021

Keywords

Comments

For any n >= 0:
- let s(n) be the unique finite set of nonnegative integers such that n = Sum_{e in s(n)} 2^e,
- then s(a(n)) corresponds to the set of nonnegative integers that are not the sum of two nonnegative integers not in s(n).

Examples

			The first terms, alongside the corresponding sets, are:
  n   a(n)  s(n)          s(a(n))
  --  ----  ------------  ------------------------
   0     0  {}            {}
   1     3  {0}           {0, 1}
   2     2  {1}           {1}
   3    15  {0, 1}        {0, 1, 2, 3}
   4     0  {2}           {}
   5    11  {0, 2}        {0, 1, 3}
   6     6  {1, 2}        {1, 2}
   7    63  {0, 1, 2}     {0, 1, 2, 3, 4, 5}
   8     0  {3}           {}
   9     3  {0, 3}        {0, 1}
  10    10  {1, 3}        {1, 3}
  11    47  {0, 1, 3}     {0, 1, 2, 3, 5}
  12     8  {2, 3}        {3}
  13    27  {0, 2, 3}     {0, 1, 3, 4}
  14    14  {1, 2, 3}     {1, 2, 3}
  15   255  {0, 1, 2, 3}  {0, 1, 2, 3, 4, 5, 6, 7}
		

Crossrefs

Programs

  • PARI
    a(n) = { my (v=0); for (x=0, 2*#binary(n), my (f=0); for (y=0, x, if (!bittest(n,y) && !bittest(n,x-y), f=1; break)); if (!f, v+=2^x)); return (v) }

Formula

a(2^n-1) = 4^n-1.

A342642 Numbers k such that A342640(k) = 0.

Original entry on oeis.org

0, 4, 8, 16, 20, 24, 32, 36, 40, 48, 64, 68, 72, 80, 84, 88, 96, 100, 104, 112, 128, 132, 136, 144, 148, 152, 160, 164, 168, 176, 192, 196, 200, 208, 216, 224, 228, 256, 260, 264, 272, 276, 280, 288, 292, 296, 304, 320, 324, 328, 336, 340, 344, 352, 356, 360
Offset: 1

Views

Author

Rémy Sigrist, Mar 17 2021

Keywords

Comments

For any m >= 0:
- let s(m) be the unique finite set of nonnegative integers such that m = Sum_{e in s(m)} 2^e,
- this sequence contains the numbers k such that every nonnegative integer is the sum of two nonnegative integers not in s(k).
All terms are even.

Examples

			The first terms, alongside the corresponding sets, are:
  n   a(n)  s(a(n))
  --  ----  ---------
   1     0  {}
   2     4  {2}
   3     8  {3}
   4    16  {4}
   5    20  {2, 4}
   6    24  {3, 4}
   7    32  {5}
   8    36  {2, 5}
   9    40  {3, 5}
  10    48  {4, 5}
  11    64  {6}
  12    68  {2, 6}
  13    72  {3, 6}
  14    80  {4, 6}
  15    84  {2, 4, 6}
		

Crossrefs

Programs

  • PARI
    is(n) = { my (v=0); for (x=0, 2*#binary(n), my (f=0); for (y=0, x, if (!bittest(n, y) && !bittest(n, x-y), f=1; break)); if (!f, v+=2^x)); return (v==0) }
Showing 1-3 of 3 results.