A342646 Maximal number of 4213 patterns in a permutation of 1,2,...,n.
0, 0, 0, 0, 1, 3, 6, 13, 24, 40, 62, 96, 138, 192, 264, 354
Offset: 0
Examples
For n = 7, a(7) = 13 because the permutation 7532146 has 13 instances of the pattern 4213, namely: 7536, 7526, 7516, 7546, 7324, 7326, 7314, 7316, 7214, 7216, 5324, 5314, and 5214. Moreover, all other permutations in S_7 have 13 or fewer instances of this pattern.
Links
- M. H. Albert, M. D. Atkinson, C. C.Handley, D. A. Holton, and W. Stromquist, On packing densities of permutations, The Electronic Journal of Combinatorics, 9(1) (2002).
- David Bevan, The permutation class Av(4213,2143), arXiv:1510.06328 [math.CO], 2015.
- FindStat, St000750: The number of occurrences of the pattern 4213 in a permutation.
- Rob Pratt, Greatest number of occurrences of the pattern 4213 in a permutation, Mathematics Stack Exchange.
- Eric Weisstein's World of Mathematics, Permutation Pattern
Crossrefs
Extensions
a(10)-a(12) from Rob Pratt
a(13)-a(15) from Bert Dobbelaere, Mar 26 2021
Comments