A342656 a(n) = A087436(A156552(n)); Number of odd prime factors in A156552(n), counted with repetitions.
0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 2, 2, 0, 1, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 1, 3, 0, 1, 2, 2, 0, 1, 0, 1, 1, 4, 0, 1, 1, 2, 2, 1, 0, 1, 2, 1, 2, 3, 0, 1, 0, 2, 1, 3, 1, 2, 0, 2, 1, 1, 0, 2, 0, 2, 1, 2, 1, 2, 0, 1, 2, 2, 0, 3, 2, 3, 4, 4, 0, 3, 2, 2, 3, 4, 2, 2, 0, 2, 2, 2, 0, 3, 0, 1, 2
Offset: 2
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 2..10000 (based on Hans Havermann's factorization of A156552)
- Index entries for sequences computed from indices in prime factorization
Crossrefs
Programs
-
PARI
A087436(n) = (bigomega(n>>valuation(n,2))); A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; A342656(n) = A087436(A156552(n));
-
PARI
\\ Version using the factorization file available at https://oeis.org/A156552/a156552.txt v156552sigs = readvec("a156552.txt"); A342656(n) = if(2==n,0,my(prsig=v156552sigs[n],ps=prsig[1],es=prsig[2]); vecsum(es)-((2==ps[1])*es[1])); \\ Antti Karttunen, Jan 29 2022