cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A342655 Number of prime factors (counted with multiplicity) in A156552(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 2, 4, 1, 5, 1, 2, 2, 6, 1, 7, 1, 3, 2, 8, 1, 3, 2, 2, 2, 9, 2, 10, 1, 2, 2, 3, 3, 11, 1, 3, 2, 12, 1, 13, 1, 2, 4, 14, 1, 4, 2, 3, 1, 15, 1, 4, 1, 3, 3, 16, 1, 17, 2, 2, 3, 3, 2, 18, 2, 2, 1, 19, 2, 20, 2, 2, 2, 4, 2, 21, 1, 3, 2, 22, 3, 4, 3, 5, 4, 23, 3, 5, 2, 4, 4, 4, 2, 24, 2, 3, 2, 25, 3, 26, 1, 3
Offset: 2

Views

Author

Antti Karttunen, Mar 18 2021

Keywords

Crossrefs

Cf. also A323243, A324104, A324105, A324119, A342653 (sigma, phi, tau, omega and mu similarly permuted).

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res};
    A342655(n) = bigomega(A156552(n));

Formula

a(n) = A001222(A156552(n)).
a(n) = A342656(n) + A055396(n) - 1.
a(A003961(n)) = 1 + a(n).
a(A000040(n)) = n-1 for all n >= 1.

A339893 a(n) = A000523(n) - A001222(n); floor(log_2(n)) minus the number of prime divisors of n, counted with multiplicity.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 1, 0, 3, 1, 3, 1, 2, 2, 3, 0, 2, 2, 1, 1, 3, 1, 3, 0, 3, 3, 3, 1, 4, 3, 3, 1, 4, 2, 4, 2, 2, 3, 4, 0, 3, 2, 3, 2, 4, 1, 3, 1, 3, 3, 4, 1, 4, 3, 2, 0, 4, 3, 5, 3, 4, 3, 5, 1, 5, 4, 3, 3, 4, 3, 5, 1, 2, 4, 5, 2, 4, 4, 4, 2, 5, 2, 4, 3, 4, 4, 4, 0, 5, 3, 3, 2, 5, 3, 5, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2020

Keywords

Crossrefs

Cf. A000523, A001222, A029744 (positions of 0's), A339895.
Cf. also A339823, A342657 [= a(A156552(n))].

Programs

  • PARI
    A339893(n) = (#binary(n) - 1 - bigomega(n));

Formula

a(n) = A000523(n) - A001222(n).
a(n) = A339895(A122111(n)).
Showing 1-2 of 2 results.