cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A342661 a(n) = n * sigma(A064989(n)), where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p, and sigma gives the sum of the divisors of its argument.

Original entry on oeis.org

1, 2, 9, 4, 20, 18, 42, 8, 63, 40, 88, 36, 156, 84, 180, 16, 238, 126, 342, 80, 378, 176, 460, 72, 325, 312, 405, 168, 696, 360, 930, 32, 792, 476, 840, 252, 1184, 684, 1404, 160, 1558, 756, 1806, 352, 1260, 920, 2068, 144, 1519, 650, 2142, 624, 2544, 810, 1760, 336, 3078, 1392, 3186, 720, 3660, 1860, 2646, 64, 3120
Offset: 1

Views

Author

Antti Karttunen, Mar 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 2^e, Module[{q = NextPrime[p, -1]}, p^e*(q^(e + 1) - 1)/(q - 1)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)
  • PARI
    A064989(n) = { my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f) };
    A326041(n) = sigma(A064989(n));
    A342661(n) = (n*A326041(n));

Formula

Multiplicative with a(p^e) = (p^e) * (q^(e+1)-1)/(q-1), where q = 1 for p = 2, and for odd primes p, q = A151799(p), i.e., the previous prime.
a(n) = n * A326041(n) = n * A000203(A064989(n)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/9) * Product_{p prime > 2} (p^3/((p+1)*(p^2-prevprime(p)))) = 0.1815217..., where prevprime is A151799. - Amiram Eldar, Dec 24 2022

A342662 a(n) = sigma(n) * A064989(n), where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p, and sigma is the sum of the divisors of n.

Original entry on oeis.org

1, 3, 8, 7, 18, 24, 40, 15, 52, 54, 84, 56, 154, 120, 144, 31, 234, 156, 340, 126, 320, 252, 456, 120, 279, 462, 320, 280, 690, 432, 928, 63, 672, 702, 720, 364, 1178, 1020, 1232, 270, 1554, 960, 1804, 588, 936, 1368, 2064, 248, 1425, 837, 1872, 1078, 2538, 960, 1512, 600, 2720, 2070, 3180, 1008, 3658, 2784, 2080, 127
Offset: 1

Views

Author

Antti Karttunen, Mar 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 1, NextPrime[p, -1]^e]*(p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)
  • PARI
    A064989(n) = { my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f) };
    A342662(n) = (sigma(n)*A064989(n));

Formula

Multiplicative with a(p^e) = q^e * (p^(e+1)-1)/(p-1), where q = 1 for p = 2, and for odd primes p, q = A151799(p), i.e., the previous prime.
a(n) = A000203(n) * A064989(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (16/63) * Product_{p prime > 2} p^4*(p-1)/((p^3-prevprime(p))*(p^2-prevprime(p))) = 0.1935405..., where prevprime is A151799. - Amiram Eldar, Dec 24 2022

A342663 Numerator of ratio A342661(n)/A342662(n): a(n) = A342661(n) / gcd(A342661(n), A342662(n)).

Original entry on oeis.org

1, 2, 9, 4, 10, 3, 21, 8, 63, 20, 22, 9, 78, 7, 5, 16, 119, 21, 171, 40, 189, 44, 115, 3, 325, 52, 81, 3, 116, 5, 465, 32, 33, 238, 7, 9, 592, 57, 351, 16, 779, 63, 903, 88, 35, 115, 517, 18, 1519, 650, 119, 312, 424, 27, 220, 14, 1539, 232, 531, 5, 1830, 155, 1323, 64, 260, 11, 2077, 68, 345, 7, 1207, 42, 2628, 1184
Offset: 1

Views

Author

Antti Karttunen, Mar 23 2021

Keywords

Comments

Let r(row,col) = A341605(row,col)/A341606(row,col) and d(n) = A342661(n)/A342661(n) = A342663(n)/A342664(n). Then for row > 1, r(row-1,col) = d(A246278(row,col)) * r(row,col).

Crossrefs

Programs

Formula

a(n) = A342661(n) / A342670(n) = A342661(n) / gcd(A342661(n), A342662(n)).

A342667 Largest prime in the numerator of ratio A341528(n)/A341529(n) (when presented in its lowest terms).

Original entry on oeis.org

1, 2, 3, 13, 5, 2, 7, 2, 31, 5, 11, 13, 13, 7, 3, 11, 17, 31, 19, 13, 7, 11, 23, 2, 19, 13, 13, 13, 29, 2, 31, 13, 11, 17, 5, 31, 37, 19, 13, 5, 41, 7, 43, 11, 31, 23, 47, 11, 7, 19, 17, 13, 53, 13, 11, 7, 19, 29, 59, 13, 61, 31, 31, 1093, 13, 11, 67, 17, 23, 5, 71, 31, 73, 37, 19, 19, 7, 13, 79, 11, 71, 41, 83, 13
Offset: 1

Views

Author

Antti Karttunen, Mar 23 2021

Keywords

Comments

Equally, largest prime in the denominator of ratio A342661(A003961(n)) / A342662(A003961(n)).

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    A341526(n) = { my(s=A003961(n)); numerator((sigma(s)*n)/(sigma(n)*s)); };
    A342667(n) = A006530(A341526(n));

Formula

a(n) = A006530(A341526(n)).
a(n) = A006530(A342664(A003961(n))).

A342670 a(n) = gcd(n*sigma(A064989(n)), sigma(n)*A064989(n)), where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p, and sigma gives the sum of the divisors of its argument.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 2, 1, 1, 2, 4, 4, 2, 12, 36, 1, 2, 6, 2, 2, 2, 4, 4, 24, 1, 6, 5, 56, 6, 72, 2, 1, 24, 2, 120, 28, 2, 12, 4, 10, 2, 12, 2, 4, 36, 8, 4, 8, 1, 1, 18, 2, 6, 30, 8, 24, 2, 6, 6, 144, 2, 12, 2, 1, 12, 144, 2, 14, 12, 240, 4, 12, 2, 2, 9, 4, 336, 24, 2, 2, 1, 2, 4, 56, 4, 12, 24, 4, 6, 72, 56, 8, 2, 8, 360
Offset: 1

Views

Author

Antti Karttunen, Mar 24 2021

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A342661(n), A342662(n)).
a(n) = gcd(n*A000203(A064989(n)), A000203(n)*A064989(n)).
Showing 1-5 of 5 results.