cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342680 Decimal expansion of Sum_{n>=1} sin(sin(n)/n).

Original entry on oeis.org

9, 6, 1, 3, 9, 4, 3, 1, 5, 9, 4, 5, 7, 3, 6, 5, 4, 7, 2, 4, 7, 6, 4, 5, 9, 5, 3, 1, 6, 1, 5, 4, 7, 3, 0, 6, 8, 6, 8, 5, 8, 2, 6, 9, 3, 0, 1, 0, 5, 8, 4, 6, 0, 4, 5, 5, 1, 1, 5, 1, 4, 9, 1, 8, 1, 8, 6, 3, 3, 7, 8, 0, 2, 9, 1, 4, 6, 9, 9, 7, 0, 6, 6, 7, 5, 4, 2, 4, 3, 2, 5, 5, 4, 9, 5, 5, 5, 5, 2, 6, 9, 8, 7, 9, 2
Offset: 0

Views

Author

Bernard Schott, Mar 18 2021

Keywords

Comments

Abel summation shows the series is convergent.

Examples

			0.96139431594573654724764595316154730686858269301058...
		

References

  • Konrad Knopp, Theory and Application of Infinite Series, Blackie, 1928, p. 313.
  • Jean-Marie Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice C.3.7 2.3.b)4. p. 309.

Crossrefs

Programs

  • Magma
    nDgtsOutput:=110; nDgtsPrecision:=nDgtsOutput+10; SetDefaultRealField(RealField(nDgtsPrecision)); kMax:=Ceiling(1.395*nDgtsPrecision-3); mMax:=Ceiling(1.5*kMax); sum:=0.0; S1:=[0.0 : j in [1..kMax]]; n:=0; for m in [1..mMax] do S2:=S1; for k in [1..355] do n:=n+1; sum+:=Sin(Sin(n)/n); end for; S1[1]:=sum; for j in [1..kMax-1] do S1[j+1]:=(S2[j]+S1[j])/2; end for; end for; ChangePrecision(S1[#S1], nDgtsOutput); // The constants 1.395 and 1.5 were empirically derived; 355 is used because 355/Pi is very close to an odd integer. - Jon E. Schoenfield, Mar 21 2021

Extensions

a(3)-a(104) from Jon E. Schoenfield, Mar 20 2021