cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A096444 Decimal expansion of (Pi - 1)/2.

Original entry on oeis.org

1, 0, 7, 0, 7, 9, 6, 3, 2, 6, 7, 9, 4, 8, 9, 6, 6, 1, 9, 2, 3, 1, 3, 2, 1, 6, 9, 1, 6, 3, 9, 7, 5, 1, 4, 4, 2, 0, 9, 8, 5, 8, 4, 6, 9, 9, 6, 8, 7, 5, 5, 2, 9, 1, 0, 4, 8, 7, 4, 7, 2, 2, 9, 6, 1, 5, 3, 9, 0, 8, 2, 0, 3, 1, 4, 3, 1, 0, 4, 4, 9, 9, 3, 1, 4, 0, 1, 7, 4, 1, 2, 6, 7, 1, 0, 5, 8, 5, 3, 3, 9, 9, 1, 0, 7
Offset: 1

Views

Author

N. J. A. Sloane, Aug 16 2004

Keywords

Comments

From Bernard Schott, Apr 19 2021: (Start)
The series Sum_{k>=1} sin(k)/k and also Sum_{k>=1} cos(k)/k (A121225) are called Fresnel series.
The series Sum_{k>=1} |sin(k)/k| is divergent. (End)

Examples

			1.0707963267948966...
		

References

  • Xavier Merlin, Methodix Analyse, Ellipses, 1997, p. 117.

Crossrefs

Programs

Formula

Equals Sum_{k >= 1} sin(k)/k. (This follows from the identity x = Pi - 2 Sum_{k >= 1} sin(k*x)/k, as observed by Euler in 1744.)
Equals A019669 minus 1/2. - R. J. Mathar, Dec 15 2008
Equals Sum_{k >= 1} (sin(k)/k)^2. (Interestingly, Sum_{k >= 1} sin(k)/k = Sum_{k >= 1} (sin(k)/k)^2, a series whose terms sum to the sum of the square of each term.) - Dimitri Papadopoulos, Mar 11 2015
Equals arctan(sin(1)/(1-cos(1))). - Amiram Eldar, Jun 06 2021

Extensions

More terms from Robert G. Wilson v, Aug 17 2004
Better definition from Eric W. Weisstein, Aug 18 2004

A362662 Decimal expansion of Sum_{n>=1} (tan(1/n) - sin(1/n)).

Original entry on oeis.org

8, 2, 2, 0, 8, 2, 2, 0, 0, 8, 0, 3, 5, 8, 8, 2, 0, 2, 9, 3, 5, 8, 7, 0, 1, 1, 8, 7, 1, 5, 9, 9, 3, 5, 2, 0, 7, 3, 0, 4, 4, 6, 0, 4, 3, 8, 1, 1, 6, 5, 3, 2, 6, 3, 9, 0, 8, 3, 6, 8, 5, 9, 3, 9, 3, 4, 3, 7, 1, 0, 5, 3, 4, 5, 3, 5, 4, 3, 6, 8, 1, 3, 2, 4, 6, 0, 0, 4, 7, 1, 3, 4, 7, 4, 3, 2, 2
Offset: 0

Views

Author

Bernard Schott, Apr 29 2023

Keywords

Comments

Series Sum_{n>=1} sin(1/n) and Sum_{n>=1} tan(1/n) -> oo but with u(n) = (tan(1/n) - sin(1/n)), as u(n) ~ 1 / (2*n^3) when n -> oo, the series Sum_{n>=1} u(n) is convergent.

Examples

			Equals 0.822082200803588202935870118715993520730...
		

References

  • J. Guégand and M.-A. Maingueneau, Exercices d'Analyse, Exercice 1 - 41.2, p. 47, Classes Préparatoires aux Grandes Ecoles, Ellipses, 1988.

Crossrefs

Programs

  • Maple
    evalf(sum(tan(1/n) - sin(1/n), n=1..infinity), 120);
  • PARI
    sumpos(n=1, tan(1/n) - sin(1/n)) \\ Michel Marcus, Apr 29 2023

A351738 Decimal expansion of Sum_{k>0} sin(sqrt(k)) / k.

Original entry on oeis.org

1, 7, 1, 5, 6, 7, 1, 7, 9, 4, 7, 0, 9
Offset: 1

Views

Author

Bernard Schott, May 20 2022

Keywords

Comments

Sum_{k>0} sin(k^alpha) / (k^beta) with 0 < alpha < 1 is convergent if beta > max(alpha, 1-alpha); the constant of this sequence corresponds to the case alpha = 1/2 and beta = 1 (see Arnaudiès).
Consequence: Sum_{k>0} sin(k^(1/m)) / k converges for any positive integer m.
The sequence converges slowly.

Examples

			1.715671794709...
		

References

  • J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, 1993, Exercice 11, pp. 316-319.

Crossrefs

Programs

  • PARI
    default(realprecision, 100); sumalt(k=0, sum(j=1+floor(k^2*Pi^2),floor((k+1)^2*Pi^2), sin(sqrt(j))/j)) \\ Vaclav Kotesovec, May 21 2022

Extensions

More digits from Stefano Spezia, May 21 2022

A363906 Decimal expansion of Sum_{n>=1} (arcsin(1/n) - sin(1/n)).

Original entry on oeis.org

7, 9, 9, 5, 8, 8, 6, 2, 3, 5, 5, 3, 3, 7, 6, 9, 9, 0, 1, 1, 3, 9, 9, 1, 1, 1, 3, 5, 2, 7, 2, 3, 9, 8, 2, 5, 0, 4, 0, 1, 7, 2, 2, 8, 4, 1, 9, 0, 7, 7, 7, 9, 6, 8, 3, 6, 4, 1, 1, 6, 5, 9, 2, 8, 4, 3, 6, 7, 7, 3, 0, 4, 0, 6, 7, 7, 5, 5, 7, 2, 1, 7, 9, 1, 8, 1, 7
Offset: 0

Views

Author

Bernard Schott, Jun 27 2023

Keywords

Comments

Series Sum_{n>=1} arcsin(1/n) and Sum_{n>=1} sin(1/n) -> oo but with v(n) = (arcsin(1/n) - sin(1/n)), as v(n) ~ 1 / (3*n^3) when n -> oo, the series Sum_{n>=1} v(n) is convergent.

Examples

			0.79958862355337699...
		

Crossrefs

Programs

  • Mathematica
    NSum[ArcSin[1/n]-Sin[1/n], {n, Infinity}, WorkingPrecision -> 95, NSumTerms -> 82] // RealDigits[#, 10, 87] &//First (* Stefano Spezia, Jun 27 2023 *)
  • PARI
    sumpos(n=1, asin(1/n) - sin(1/n)) \\ Michel Marcus, Jun 27 2023

Formula

Equals Sum_{k>=1} (binomial(2*k,k)/((2*k+1)*2^(2*k)) - (-1)^k/(2*k+1)!) * zeta(2*k+1). - Vaclav Kotesovec, Jun 27 2023

Extensions

More terms from Stefano Spezia, Jun 27 2023
Showing 1-4 of 4 results.