A342696 a(n) = floor(n/12).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
Programs
-
Mathematica
Floor[Range[0, 200]/12]
Formula
G.f.: x^12 / ( (1+x)*(1+x^2)*(x^4-x^2+1)*(x^2-x+1)*(1+x+x^2)*(x-1)^2 ). - R. J. Mathar, Jul 08 2021
a(n) = a(n-1) + a(n-12) - a(n-13). - Wesley Ivan Hurt, Oct 29 2022
Comments