A342697 For any number n with binary expansion Sum_{k >= 0} b(k) * 2^k, the binary expansion of a(n) is Sum_{k >= 0} floor((b(k) + b(k+1) + b(k+2))/2) * 2^k.
0, 0, 0, 1, 0, 1, 3, 3, 0, 0, 2, 3, 6, 7, 7, 7, 0, 0, 0, 1, 4, 5, 7, 7, 12, 12, 14, 15, 14, 15, 15, 15, 0, 0, 0, 1, 0, 1, 3, 3, 8, 8, 10, 11, 14, 15, 15, 15, 24, 24, 24, 25, 28, 29, 31, 31, 28, 28, 30, 31, 30, 31, 31, 31, 0, 0, 0, 1, 0, 1, 3, 3, 0, 0, 2, 3, 6
Offset: 0
Examples
The first terms, in decimal and in binary, are: n a(n) bin(n) bin(a(n)) -- ---- ------ --------- 0 0 0 0 1 0 1 0 2 0 10 0 3 1 11 1 4 0 100 0 5 1 101 1 6 3 110 11 7 3 111 11 8 0 1000 0 9 0 1001 0 10 2 1010 10 11 3 1011 11 12 6 1100 110 13 7 1101 111 14 7 1110 111 15 7 1111 111
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..8192
- Michael De Vlieger, Log log scatterplot of a(n), n = 0..2^20.
- Index entries for sequences related to binary expansion of n
Programs
-
Mathematica
A342697[n_] := Quotient[7*n - BitXor[n, 2*n, 4*n], 8]; Array[A342697, 100, 0] (* Paolo Xausa, Aug 06 2025 *)
-
PARI
a(n) = sum(k=0, #binary(n), ((bittest(n, k)+bittest(n, k+1)+bittest(n, k+2))>=2) * 2^k)
Formula
a(n) = 0 iff n belongs to A048715.
Comments