cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342698 For any number n with binary expansion (b(1), b(2), ..., b(k)), the binary expansion of a(n) is (floor((b(k)+b(1)+b(2))/2), floor((b(1)+b(2)+b(3))/2), ..., floor((b(k-1)+b(k)+b(1))/2)).

Original entry on oeis.org

0, 1, 1, 3, 0, 7, 7, 7, 0, 9, 5, 15, 12, 15, 15, 15, 0, 17, 1, 19, 8, 27, 15, 31, 24, 25, 29, 31, 28, 31, 31, 31, 0, 33, 1, 35, 0, 35, 7, 39, 16, 49, 21, 55, 28, 63, 31, 63, 48, 49, 49, 51, 56, 59, 63, 63, 56, 57, 61, 63, 60, 63, 63, 63, 0, 65, 1, 67, 0, 67, 7
Offset: 0

Views

Author

Rémy Sigrist, Mar 18 2021

Keywords

Comments

This sequence is a variant of A342697; here we deal with bit triples in a "cyclic" binary representation of n.

Examples

			The first terms, in decimal and in binary, are:
  n   a(n)  bin(n)  bin(a(n))
  --  ----  ------  ---------
   0     0       0          0
   1     1       1          1
   2     1      10          1
   3     3      11         11
   4     0     100          0
   5     7     101        111
   6     7     110        111
   7     7     111        111
   8     0    1000          0
   9     9    1001       1001
  10     5    1010        101
  11    15    1011       1111
  12    12    1100       1100
  13    15    1101       1111
  14    15    1110       1111
  15    15    1111       1111
		

Crossrefs

Cf. A003817, A342697, A342699 (fixed points), A342700.

Programs

  • PARI
    a(n) = my (w=#binary(n)); sum(k=0, w-1, ((bittest(n, (k-1)%w)+bittest(n, k%w)+bittest(n, (k+1)%w))>=2) * 2^k)

Formula

a(n) + A342700(n) = A003817(n).
a(n) = n iff n belongs to A342699.