A342723 a(n) is the number of convex integer quadrilaterals (up to congruence) with integer side lengths a,b,c,d with n=Max(a,b,c,d), integer diagonals e,f and integer area.
0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 2, 1, 1, 3, 1, 2, 0, 0, 4, 3, 0, 0, 4, 7, 2, 0, 5, 2, 5, 0, 1, 0, 3, 4, 3, 4, 0, 6, 7, 3, 4, 0, 3, 4, 0, 0, 5, 0, 9, 10, 9, 3, 0, 5, 8, 0, 4, 0, 17, 4, 0, 9, 1, 19, 2, 0, 6, 2, 7, 0, 7, 7, 7, 23, 2, 8, 12, 0, 10, 0, 5, 0, 15, 27
Offset: 1
Keywords
Examples
a(4)=1 is the smallest possible solution and is a rectangle with a=c=4, b=d=3, e=f=5 and area 12. a(24)=4 includes the smallest possible solution with all sides a,b,c,d different and a=24, b=20, c=15, d=7, e=20, f=25 and area 234. Furthermore there are three rectangles with a=24,b=7, a=24,b=10 and a=24,b=18.
Crossrefs
Programs
-
Mathematica
an={}; area[a_,b_,c_,d_,e_,f_]:=1/4 Sqrt[4e^2 f^2-(a^2+c^2-b^2-d^2)^2]; he[a_,b_,e_]:=1/(2 e) Sqrt[-(a-b-e) (a+b-e) (a-b+e) (a+b+e)]; paX[e_]:={e,0} (*vertex A coordinate*) pbX[a_,b_,e_]:={(-a^2+b^2+e^2)/(2 e),he[a,b,e]}(*vertex B coordinate*) pc={0,0};(*vertex C coordinate*)pdX[c_,d_,e_]:={(c^2-d^2+e^2)/(2 e),-he[c,d,e]}(*vertex D coordinate*) convexQ[{bx_,by_},{dx_,dy_},e_]:=If[(by-dy) e>by dx-bx dy>0,True,False] (*define order on tuples*) gQ[x_,y_]:=Module[{z=x-y,res=False},Do[If[z[[i]]>0,res=True;Break[],If[z[[i]]<0,Break[]]],{i,1,6}];res] (*check if tuple is canonical*) canonicalQ[{a_,b_,c_,d_,e_,f_}]:=Module[{x={a,b,c,d,e,f}},If[(gQ[{b,a,d,c,e,f},x]||gQ[{d,c,b,a,e,f},x]||gQ[{c,d,a,b,e,f},x]||gQ[{b,c,d,a,f,e},x]||gQ[{a,d,c,b,f,e},x]||gQ[{c,b,a,d,f,e},x]||gQ[{d,a,b,c,f,e},x]),False,True]] Do[cnt=0; Do[pa=paX[e];pb=pbX[a,b,e];pd=pdX[c,d,e]; If[(f=Sqrt[(pb-pd).(pb-pd)];IntegerQ[f])&&(ar=area[a,b,c,d,e,f]; IntegerQ[ar])&&convexQ[pb,pd,e]&&canonicalQ[{a,b,c,d,e,f}],cnt++ (*;Print[{{a,b,c,d,e,f,ar},Graphics[Line[{pa,pb,pc,pd,pa}]]}]*)],{b,1,a},{e,a-b+1,a+b-1},{c,1,a},{d,Abs[e-c]+1,Min[a,e+c-1]}]; AppendTo[an,cnt],{a,1,85}] an
Comments