cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342757 Array read by ascending antidiagonals: T(k, n) is the minimum value of the magic constant in a perimeter-magic k-gon of order n.

Original entry on oeis.org

9, 12, 17, 14, 22, 28, 17, 27, 37, 42, 19, 32, 45, 55, 59, 22, 37, 54, 68, 78, 79, 24, 42, 62, 81, 96, 104, 102, 27, 47, 71, 94, 115, 129, 135, 128, 29, 52, 79, 107, 133, 154, 167, 169, 157, 32, 57, 88, 120, 152, 179, 200, 210, 208, 189, 34, 62, 96, 133, 170, 204, 232, 251, 258, 250, 224
Offset: 3

Views

Author

Stefano Spezia, Mar 21 2021

Keywords

Examples

			The array begins:
k\n|  3   4   5   6    7 ...
---+------------------------
3  |  9  17  28  42   59 ...
4  | 12  22  37  55   78 ...
5  | 14  27  45  68   96 ...
6  | 17  32  54  81  115 ...
7  | 19  37  62  94  133 ...
...
		

Crossrefs

Cf. A016873 (n = 4), A285009 (k = 3), A342719, A342758 (maximum).

Programs

  • Mathematica
    T[k_,n_]:= ((1-Mod[k,2])Mod[n,2]+k*(n^2-2*n+2)+n)/2; Table[T[k+3-n,n],{k,3,13},{n,3,k}]//Flatten

Formula

G.f.: (x^2*(-3*y^3 + 2*y - 1) - x*(2*y^3 + y^2 - 2*y + 1) + (y - 1)*y)/((x - 1)^2*(x + 1)*(y - 1)^3*(y + 1)).
T(k, n) = (n^2/2 - n + 1)*k + n/2 if n is even or both n and k are odd.
T(k, n) = (n^2/2 - n + 1)*k + (n + 1)/2 if n is odd and k is even.
T(k, n) = ((1 - (k mod 2))*(n mod 2) + k*(n^2 - 2*n + 2) + n)/2.