cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342765 Array T(n, k), n, k > 0, read by antidiagonals; T(n, k) = max(A006530(n), A006530(k)) * T(n/A006530(n), k/A006530(k)) with T(1, 1) = 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 3, 4, 5, 6, 5, 6, 6, 5, 6, 7, 6, 5, 4, 5, 6, 7, 8, 7, 6, 10, 10, 6, 7, 8, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 9, 12, 14, 10, 10, 14, 12, 9, 10, 11, 10, 9, 8, 7, 6, 7, 8, 9, 10, 11, 12, 11, 10, 9, 20, 14, 14, 20, 9, 10, 11, 12
Offset: 1

Views

Author

Rémy Sigrist, Apr 02 2021

Keywords

Comments

To compute T(n, k):
- write the prime factors of n and of k in ascending order with multiplicities on two lines, right aligned,
- take the largest prime number in each column and multiply back,
- for example, for T(12, 14):
12 -> 2 2 3
14 -> 2 7
-----
2 2 7 -> 28 = T(12, 14)
This sequence is closely related to lunar addition (A087061):
- let n and k be two p-smooth numbers,
- let f be the function that associates to a p-smooth number, say m, the unique number whose (p+1)-base digits are prime, nondecreasing and whose product is m,
- let g be the inverse of f,
- then for any p-smooth numbers n and k, T(n, k) = g(f(n) "+" f(k)) where "+" denotes lunar addition in base p+1,
- see A342767 for the corresponding multiplication.

Examples

			Array T(n, k) begins:
  n\k|   1   2   3   4   5   6   7   8   9  10  11  12  13  14
  ---+--------------------------------------------------------
    1|   1   2   3   4   5   6   7   8   9  10  11  12  13  14
    2|   2   2   3   4   5   6   7   8   9  10  11  12  13  14
    3|   3   3   3   6   5   6   7  12   9  10  11  12  13  14
    4|   4   4   6   4  10   6  14   8   9  10  22  12  26  14
    5|   5   5   5  10   5  10   7  20  15  10  11  20  13  14
    6|   6   6   6   6  10   6  14  12   9  10  22  12  26  14
    7|   7   7   7  14   7  14   7  28  21  14  11  28  13  14
    8|   8   8  12   8  20  12  28   8  18  20  44  12  52  28
    9|   9   9   9   9  15   9  21  18   9  15  33  18  39  21
   10|  10  10  10  10  10  10  14  20  15  10  22  20  26  14
   11|  11  11  11  22  11  22  11  44  33  22  11  44  13  22
   12|  12  12  12  12  20  12  28  12  18  20  44  12  52  28
   13|  13  13  13  26  13  26  13  52  39  26  13  52  13  26
   14|  14  14  14  14  14  14  14  28  21  14  22  28  26  14
		

Crossrefs

Programs

  • PARI
    gpf(n) = if (n==1, 1, my (p=factor(n)[,1]~); p[#p])
    T(n, k) = if (n==1 || k==1, max(n, k), my (p=gpf(n), q=gpf(k)); max(p, q)*T(n/p, k/q))

Formula

T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, 1) = n.
T(n, n) = n.
A001222(T(n, k)) = max(A001222(n), A001222(k)).
A006530(T(n, k)) = max(A006530(n), A006530(k)).