A342796 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(6,n) (with n at least 4) missing three edges, where all three removed edges are incident to the same vertex in the 6-point set.
709682, 77784248, 6126191066, 427218509360, 28245026082242, 1821452259070568, 116065734824421866, 7353059854962677600, 464513906582191544402, 29303821259651224580888, 1847364138146506201033466, 116421875056692663153073040
Offset: 4
Links
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Index entries for linear recurrences with constant coefficients, signature (120,-4593,69688,-428787,978768,-615195).
Crossrefs
Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.
Formula
a(n) = 29791*63^(n-3) - 46666*31^(n-3) + 20305*15^(n-3) - 3700*7^(n-3) + 275*3^(n-3) - 5.
Comments